170
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Hybrid Neuro-Genetic Machine Learning Models for the Engineering of Ring-spun Cotton Yarns

ORCID Icon, , &
Pages 15164-15175 | Published online: 19 May 2022

References

  • Ahmad, G. G. 2016. Using artificial neural networks with graphical user interface to predict the strength of carded cotton yarns. The Journal of the Textile Institute 107 (3):386–94. doi:10.1080/00405000.2015.1034930.
  • Almetwally, A. A., H. M. F. Idrees, and A. A. Hebeish. 2014. Predicting the tensile properties of cotton/spandex core-spun yarns using artificial neural network and linear regression models. The Journal of the Textile Institute 105 (11):1221–29. doi:10.1080/00405000.2014.882043.
  • Amin, A. E., A. S. El-Geheni, I. A. El-Hawary, and R. A. El-Beali. 2007. Detecting the fault from spectrograms by using genetic algorithm techniques. Autex Research Journal 7 (2):80–88.
  • Cao, F. 2020. PID controller optimized by genetic algorithm for direct-drive servo system. Neural Computing & Applications 32 (1):23–30. doi:10.1007/s00521-018-3739-z.
  • Cheng, L., and D. L. Adams. 1995. Yarn strength prediction using neural networks: Part I: Fiber properties and yarn strength relationship. Textile Research Journal 65 (9):495–500. doi:10.1177/004051759506500901.
  • Cheng, L., and D. L. Adams. 1995. Yarn Strength Prediction Using Neural Networks: Part I: Fiber Properties and Yarn Strength Relationship. Textile Research Journal 65 (9):495–500.
  • Cheng, L., Q. Tang, Z. Zhang, and S. Wu. 2021. Data mining for fast and accurate makespan estimation in machining workshops. Journal of Intelligent Manufacturing 32 (2):483–500. doi:10.1007/s10845-020-01585-y.
  • Das, S., A. Wahi, S. M. Kumar, R. S. Mishra, and S. Sundaramurthy. 2020. Moment-based features of knitted cotton fabric defect classification by artificial neural networks. Journal of Natural Fibers. doi:10.1080/15440478.2020.1779900.
  • Demiryürek, O., and E. Koç. 2009. The mechanism and/or prediction of the breaking elongation of polyester/viscose blended open-end rotor spun yarns. Fibers and Polymers 10 (5):694–702. doi:10.1007/s12221-010-0694-4.
  • Doran, E. C., and C. Sahin. 2020. The prediction of quality characteristics of cotton/elastane core yarn using artificial neural networks and support vector machines. Textile Research Journal 90 (13–14):1558–80. doi:10.1177/0040517519896761.
  • Erbil, Y., O. Babaarslan, and İ. Ilhan. 2018. A comparative prediction for tensile properties of ternary blended open-end rotor yarns using regression and neural network models. The Journal of the Textile Institute 109 (4):560–68. doi:10.1080/00405000.2017.1361164.
  • Farooq, A., and C. Cherif. 2008. Use of artificial neural networks for determining the leveling action point at the auto-leveling draw frame. Textile Research Journal 78 (6):502–09. doi:10.1177/0040517507087677.
  • Furferi, R., and M. Gelli. 2010. Yarn strength prediction: A practical model based on artificial neural networks. Advances in Mechanical Engineering 2:640103. doi:10.1155/2010/640103.
  • Guo, K., M. Yang, and H. Zhu. 2020. Application research of improved genetic algorithm based on machine learning in production scheduling. Neural Computing & Applications 32 (7):1857–68. doi:10.1007/s00521-019-04571-5.
  • Habib, M. T., R. H. Faisal, and M. Rokonuzzaman. 2012. Feasibility of genetic algorithm for textile defect classification using neural network. International Journal of Artificial Intelligence & Applications 3 (4):131–50. doi:10.5121/ijaia.2012.3410.
  • Hadavandi, E., S. Mostafayi, and P. Soltani. 2018. A grey wolf optimizer-based neural network coupled with response surface method for modeling the strength of siro-spun yarn in spinning mills. Applied Soft Computing 72:1–13. doi:10.1016/j.asoc.2018.07.055.
  • Huang, C. C., and K. T. Chang. 2001. Fuzzy self-organizing and neural network control of sliver linear density in a drawing frame. Textile Research Journal 71 (11):987–92. doi:10.1177/004051750107101109.
  • Huang, M. L., and W. C. Kuo. 2017. “A hybrid of neural networks and genetic algorithm on multiple quality improvement for pre-oriented yarn”. In International Conference on Computer Science and Application Engineering (Shanghai), 19–24. doi:10.12783/dtcse/csae2017/17464.
  • Huang, C. C., and T. T. Tang. 2006. Parameter optimization in melt spinning by neural networks and genetic algorithms. International Journal of Advanced Manufacturing Technology 27 (11–12):1113–18. doi:10.1007/s00170-004-2302-5.
  • Hussain, T., Z. A. Malik, Z. Arshad, and A. Nazir. 2015. Comparison of artificial neural network and adaptive neuro-fuzzy inference system for predicting the wrinkle recovery of woven fabrics. The Journal of the Textile Institute 106 (9):934–38. doi:10.1080/00405000.2014.953790.
  • Kanat, Z. E., and N. Özdil. 2018. Application of artificial neural network (ANN) for the prediction of thermal resistance of knitted fabrics at different moisture content. The Journal of the Textile Institute 109 (9):1247–53. doi:10.1080/00405000.2017.1423003.
  • Kursun Bahadir, S., U. K. Sahin, and A. Kiraz. 2019. Modeling of surface temperature distributions on powered e-textile structures using an artificial neural network. Textile Research Journal 89 (3):311–21. doi:10.1177/0040517517743689.
  • Lieberman, M. A., and R. B. Patil. 1994. Clustering and neural networks to categorize cotton trash. Optical Engineering 33 (5):1642–53. doi:10.1117/12.164326.
  • Lin, J. J. 2013. A GA-based approach to elastic property design for woven fabric. In Applied mechanics and materials, ed. P. Yarlagadda, S.-F. Yang, and K. M. Lee (Switzerland: Trans Tech Publications Ltd.), Vols. 411–414, 3107–12. https://doi.org/10.4028/www.scientific.net/AMM.411-414.3107
  • Liu, J., Y. Xiao, D. Wang, and Y. Pang. 2019. Optimization of site selection for construction and demolition waste recycling plant using genetic algorithm. Neural Computing & Applications 31 (S1):233–45. doi:10.1007/s00521-018-3730-8.
  • Majumdar, A., M. Ciocoiu, and M. Blaga. 2008. Modelling of ring yarn unevenness by soft computing approach. Fibers and Polymers 9 (2):210–16. doi:10.1007/s12221-008-0034-0.
  • Majumdar, A., A. Das, P. Hatua, and A. Ghosh. 2016. Optimization of woven fabric parameters for ultraviolet radiation protection and comfort using artificial neural network and genetic algorithm. Neural Computing & Applications 27 (8):2567–76. doi:10.1007/s00521-015-2025-6.
  • Majumdar, A., P. K. Majumdar, and B. Sarkar. 2004. Prediction of single yarn tenacity of ring-and rotor-spun yarns from HVI results using artificial neural networks. Indian Journal of Fibre & Textile Research 29 (2):157–62. http://nopr.niscair.res.in/handle/123456789/24619.
  • Majumdar, A., P. K. Majumdar, and B. Sarkar. 2005. Application of an adaptive neuro-fuzzy system for the prediction of cotton yarn strength from HVI fibre properties. The Journal of the Textile Institute 96 (1):55–60. doi:10.1533/joti.2004.0062.
  • Majumdar, A., P. K. Majumdar, and B. Sarkar. 2006. An investigation on yarn engineering using artificial neural networks. The Journal of the Textile Institute 97 (5):429–34. doi:10.1533/joti.2006.0266.
  • Malaca, P., L. F. Rocha, D. Gomes, J. Silva, and G. Veiga. 2019. Online inspection system based on machine learning techniques: Real case study of fabric textures classification for the automotive industry. Journal of Intelligent Manufacturing 30 (1):351–61. doi:10.1007/s10845-016-1254-6.
  • Meng, S., R. Pan, W. Gao, J. Zhou, J. Wang, and W. He. 2021. A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern. Journal of Intelligent Manufacturing 32 (4):1147–61. doi:10.1007/s10845-020-01607-9.
  • Mitra, A., P. K. Majumdar, and D. Banerjee. 2015. Production of engineered fabrics using artificial neural network–genetic algorithm hybrid model. Journal of the Institution of Engineers (India): Series E 96 (2):159–65. doi:10.1007/s40034-014-0048-7.
  • Moezzi, M., M. Ghane, and D. Semnani. 2015. Predicting the tensile properties of UV degraded nylon66/polyester woven fabric using regression and artificial neural network models. Journal of Engineered Fibers and Fabrics 10 (1):1–11. doi:10.1177/155892501501000101.
  • Santhakumar, J., and U. M. Iqbal. 2021. Role of trochoidal machining process parameter and chip morphology studies during end milling of AISI D3 Steel. Journal of Intelligent Manufacturing 32 (3):649–65. doi:10.1007/s10845-019-01517-5.
  • Semnani, D., and M. Vadood. 2010. Improvement of intelligent methods for evaluating the apparent quality of knitted fabrics. Engineering Applications of Artificial Intelligence 23 (2):217–21. doi:10.1016/j.engappai.2009.08.003.
  • Vadood, M., D. Semnani, and M. Morshed. 2011. Optimization of acrylic dry spinning production line by using artificial neural network and genetic algorithm. Journal of Applied Polymer Science 120 (2):735–44. doi:10.1002/app.33252.
  • Xing, W., Y. Liu, B. Xin, L. Zang, and N. Deng. 2020. The application of deep and transfer learning for identifying cashmere and wool fibers. Journal of Natural Fibers. doi:10.1080/15440478.2020.1727817.
  • Yıldırım, K., H. Ogut, and Y. Ulcay. 2017. Comparing the prediction capabilities of artificial neural network (ANN) and nonlinear regression models in PET-PoY yarn characteristics and optimization of yarn production conditions. Journal of Engineered Fibers and Fabrics 12 (3):7–16. doi:10.1177/155892501701200302.
  • Yin, S., J. Bao, J. Zhang, J. Li, J. Wang, and X. Huang. 2020. Real-time task processing for spinning cyber-physical production systems based on edge computing. Journal of Intelligent Manufacturing 31 (8):2069–87. doi:10.1007/s10845-020-01553-6.
  • Zang, L., B. Xin, and N. Deng. 2021. Identification of overlapped wool/cashmere fibers based on multi-focus image fusion and convolutional neural network. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2021.1932669.
  • Zhang, Y., D. You, X. Gao, C. Wang, Y. Li, and P. P. Gao. 2020. Real-time monitoring of high-power disk laser welding statuses based on deep learning framework. Journal of Intelligent Manufacturing 31 (4):799–814. doi:10.1007/s10845-019-01477-w.
  • Zhang, Y. H., C. W. M. Yuen, W. K. Wong, and C.-W. Kan. 2011. An intelligent model for detecting and classifying color-textured fabric defects using genetic algorithms and the elman neural network. Textile Research Journal 81 (17):1772–87. doi:10.1177/0040517511410102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.