338
Views
4
CrossRef citations to date
0
Altmetric
Review

A Review on Chicken Feather Fiber (CFF) and its application in Composites

ORCID Icon, ORCID Icon & ORCID Icon
Pages 12565-12585 | Published online: 18 May 2022

References

  • Acda, M. N. 2010. Sustainable use of waste chicken feather for durable and low cost building materials for tropical climates. Sustainable Agriculture Technology, Planning and Management 353–66.
  • Acda, M. N. 2010. Waste chicken feather as reinforcement in cement-bonded composites. Philippine Journal of Science 139 (2):161–66.
  • Adejumo, O. I., O. Charles Adetunji, K. Ogundipe, and N. Sonia Osademe. 2016. Chemical composition and amino acid profile of differently processed feather meal. Journal of Agricultural Sciences, Belgrade 61 (3):237–46. doi:10.2298/JAS1603237A.
  • Adetola, S. O., A. A. Yekini, and B. S. Olayiwola. 2014. Investigation into physical and mechanical properties of few selected chicken feathers commonly found in Nigeria. IOSR Journal of Mechanical and Civil Engineering 11 (3):45–50. doi:10.9790/1684-11384550.
  • Alessandro, L., D. G. Altman, J. Tetzlaff, C. Mulrow, P. C. Gøtzsche, P. A. I. John, P. J. D. Mike Clarke, J. Kleijnen, and D. Moher. 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Journal of Clinical Epidemiology 62 (10):e1–34. doi:10.1016/j.jclinepi.2009.06.006.
  • Alimohammad, E., A. Kar, H. M. Sathpurushan Veluswamy, and B. R. George. 2002. Production and characterization of yarns and fabrics utilizing Turkey feather fibers. Materials Research Society Symposium Proceedings 702:5–16.
  • Alonso, R. S., R. Sanches, and J. Paulo Pereira Marcicano. 2013. Chicken feather-study of physical properties of textile fibers for commercial use. International Journal of Textile and Fashion Technology 3 (2):29–38.
  • Amaya-Amaya, V., M. de Icaza-Herrera, A. Laura Martínez-Hernández, G. Martínez-Barrera, and C. Velasco-Santos. 2021. Experimental approximation of the sound absorption coefficient (α) for 3d printed reentrant auxetic structures of poly lactic acid reinforced with chicken keratin materials. Materials Letters 283:128757. doi:10.1016/j.matlet.2020.128757.
  • Amieva, E. J.-C., C. Velasco-Santos, J. L. R.-A. Ana Laura Martínez-Hernández, A. M. Mendoza-Martinez, and V. M. Castaño. 2015. Composites from chicken feathers quill and recycled polypropylene. Journal of Composite Materials 49 (3):275–83. doi:10.1177/0021998313518359.
  • Arai, K. M., R. Takahashi, Y. Yokote, and K. Akahane. 1986. The primary structure of feather keratins from duck (Anas platyrhynchos) and pigeon (Columba livia). Biochimica Et Biophysica Acta (Bba)-protein Structure and Molecular Enzymology 873 (1):6–12. doi:10.1016/0167-4838(86)90182-2.
  • Aranberri, I., S. Montes, I. Azcune, A. Rekondo, and H. Jürgen Grande. 2017. Fully biodegradable biocomposites with high chicken feather content. Polymers 9 (11):593. doi:10.3390/polym9110593.
  • Ardyati, T., S. Sutoyo, and Suharjano 2019. Screening of keratinolytic fungi for biodegradation agent of keratin from chicken feather waste. In IOP Conference Series: Earth and Environmental Science, vol. 391, 012027, 1. doi:10.1088/1755-1315/391/1/012027.
  • Avella, M., A. Buzarovska, M. Emanuela Errico, G. Gentile, and A. Grozdanov. 2009. Eco-challenges of bio-based polymer composites. Materials 2 (3):911–25. doi:10.3390/ma2030911.
  • Baba, B. O., and U. Özmen. 2017. Preparation and mechanical characterization of chicken feather/PLA composites. Polymer Composites 38 (5):837–45. doi:10.1002/pc.23644.
  • Banat, F. A., and S. Al-Asheh. 1999. Biosorption of phenol by chicken feathers. Environmental Engineering and Policy 2 (2):85–90. doi:10.1007/s100220000022.
  • Bansal, G., and V. K. Singh. 2016. Review on chicken feather fiber (CFF) a livestock waste in composite material development. International Journal of Waste Resources 06 (4):4–7. doi:10.4172/2252-5211.1000254.
  • Bansal, G . 2017. Determination and reduction of casting cavity befalling in CFF filled epoxy based hybrid biocomposites. SF Journal Material Research Letters 1 (2):1–6.
  • Bansal, G., A. Jain, R. Taluja, and S. Verma. 2017a. Application of green composite material in sustainable architectural and automotive part development - A Review. International Journal of Pharmacy Research & Technology 7 (1):06–11. doi:10.31838/ijprt/07.01.02.
  • Bansal, G., V. K. Singh, P. Chandra Gope, and T. Gupta. 2017b. Application and properties of chicken feather fiber (CFF) a livestock waste in composite material development. Journal of Graphic Era University 5 (January):16–24. http://geujournals.com/assets/4-jgeu-me-16-03-bansal-v51-1624.pdf.
  • Bansal, G., A. Jain, M. Rishabh, R. Taluja, and S. Verma. 2018. Composite fabrication and characterization using chicken feather fiber, fish residue particulate and epoxy resin matrix amalgamation. International Journal of Engineering Technology Science and Research 5 (3):474–80.
  • Barone, J. R., W. F. Schmidt, and C. F. E. Liebner. 2005. Compounding and molding of polyethylene composites reinforced with keratin feather fiber. Composites Science and Technology 65 (3–4):683–92. doi:10.1016/j.compscitech.2004.09.030.
  • Barone, J. R., and W. F. Schmidt. 2005. Polyethylene reinforced with keratin fibers obtained from chicken feathers. Composites Science and Technology 65 (2):173–81. doi:10.1016/j.compscitech.2004.06.011.
  • Barone, J. R. 2005. Polyethylene/keratin fiber composites with varying polyethylene crystallinity. Composites. Part A, Applied Science and Manufacturing 36 (11):1518–24. doi:10.1016/j.compositesa.2005.03.006.
  • Barone, J. R., and N. T. Gregoire. 2006. Characterisation of fibre–polymer interactions and transcrystallinity in short keratin fibre–polypropylene composites. Plastics, Rubber and Composites 35 (6–7):287–93. doi:10.1179/174328906X146478.
  • Belarmino, D. D., R. Ladchumananandasivam, L. D. Belarmino, J. R. de M Pimentel, B. G. da Rocha, A. O. Galv, and M. B. D. A. Sania. 2012. Physical and morphological structure of chicken feathers (Keratin biofiber) in natural, chemically and thermally modified forms. Materials Sciences and Applications. 3 (12):887–93. doi:10.4236/msa.2012.312129.
  • Bonser, R., and P. Purslow. 1995. The young’s modulus of feather keratin. Journal of Experimental Biology 198 (4):1029–33. doi:10.1242/jeb.198.4.1029.
  • Borazan, A. A., and D. Gokdai. 2017. Polymer composites reinforced with waste marble dust and fibers from chicken feathers as an alternative material. Fresenius Environmental Bulletin 26 (3):2095–103.
  • Brebu, M., and I. Spiridon. 2011. Thermal degradation of keratin waste. Journal of Analytical and Applied Pyrolysis 91 (2):288–95. doi:10.1016/j.jaap.2011.03.003.
  • Buchwald, H., J. N. Buchwald, and T. W. McGlennon. 2014. Systematic review and meta-analysis of medium-term outcomes after banded roux-en-y gastric bypass. Obesity Surgery 24 (9):1536–51. doi:10.1007/s11695-014-1311-1.
  • Bullions, T. A., D. Hoffman, R. A. Gillespie, J. Price-O Brien, and A. C. Loos. 2006. Contributions of feather fibers and various cellulose fibers to the mechanical properties of polypropylene matrix composites. Composites Science and Technology 66 (1):102–14. doi:10.1016/j.compscitech.2005.03.017.
  • Cameron, G. J., T. J. Wess, and R. Bonser. 2003. Young’s modulus varies with differential orientation of keratin in feathers. Journal of Structural Biology 143 (2):118–23. doi:10.1016/S1047-8477(03)00142-4.
  • Cao, L., X. Shi, X. Liu, and W. Jianlin. 2013. Laboratory study on the properties of plastering mortar modified by feather fibers. Science and Engineering of Composite Materials 20 (3):293–99. doi:10.1515/secm-2012-0065.
  • Carrillo, F., A. Rahhali, J. Cañavate, and X. Colom. 2013. Biocomposites using waste whole chicken feathers and thermoplastic matrices. Journal of Reinforced Plastics and Composites 32 (19):1419–29. doi:10.1177/0731684413500546.
  • Castillo-Castillo, C., B. Adriana Salazar-Cruz, J. Luis Rivera-Armenta, M. Yolanda Chávez-Cinco, M. Leonor Méndez-Hernández, I. Alziri Estrada-Moreno, and T. Ernestina Lara Ceniceros. 2018. Evaluation of elastomeric composites reinforced with chicken feathers. In Futuristic Composites, eds. Sarabjeet Singh Sidhu, Preetkanwal Singh Bains, Redouane Zitoune, Morteza Yazdani, 297–318. Springer. doi:10.1007/978-981-13-2417-8_15.
  • Cheng, S., A. K. T. Lau, T. Liu, Y. Zhao, P. Man Lam, and Y. Yin. 2009. Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites Part B: Engineering 40 (7):650–54. doi:10.1016/j.compositesb.2009.04.011.
  • Chengtao, Y., Q. Xie, Y. Bao, G. Shan, and P. Pan. 2017. Crystalline and spherulitic morphology of polymers crystallized in confined systems. Crystals 7 (5). doi: 10.3390/cryst7050147.
  • Cheung, H.-Y., H. Mei-po, A. K. T. Lau, F. Cardona, and D. Hui. 2009. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering 40 (7):655–63. doi:10.1016/j.compositesb.2009.04.014.
  • Choudary, R. B., A. Srihari Prasad, and N. R. M. R. Bhargava. 2007. Feather fiber reinforced polyester composites 2007 in Material Science Research India . 4 (2):487–92.
  • Dalhat, M. A., S. A. Osman, A.-A.-A. Alhuraish, F. K. Almarshad, S. A. Qarwan, and A. Y. Adesina. 2020. Chicken feather fiber modified hot mix asphalt concrete: rutting performance, durability, mechanical and volumetric properties. Construction and Building Materials 239:117849. doi:10.1016/j.conbuildmat.2019.117849.
  • Das, P., P. Prasad Borah, and L. S. Badwaik. 2018. Transformation of chicken feather keratin and pomelo peel pectin into biodegradable composite film. Journal of Polymers and the Environment 26 (5):2120–29. doi:10.1007/s10924-017-1109-z.
  • Dash, A., and S. Tripathy. 2018. Mechanical characteristics of chicken feather teak wood dust epoxy filled composite. IOP Conference Series: Materials Science and Engineering 377 (1). doi:10.1088/1757-899X/377/1/012111.
  • de la Rosa, G., Guadalupe De, H. Elizabeth Reynel-Avila, A. Bonilla-Petriciolet, I. Cano-Rodriguez, C. Velasco-Santos, and A. Laura Martínez-Hernández. 2008. Recycling poultry feathers for pb removal from wastewater: Kinetic and equilibrium studies. International Journal of Chemical and Biomolecular Engineering 1 (4):185–93.
  • Droste, H. D., and A. T. DiBenedetto. 1971. The glass transition temperature of filled polymers and its effect on their physical properties. In Symposium on Interface in Composites, 42nd National Colloid Symposium, June 19–21, 1968. Chicago, Illinois. doi:10.1002/app.1969.070131011.
  • Dweib, M. A., B. Hu, A. O-donnell, H. W. Shenton, and R. P. Wool. 2004. All natural composite sandwich beams for structural applications. Composite Structures 63 (2):147–57. doi:10.1016/S0263-8223(03)00143-0.
  • Erman, S., R. P. Wool, W. J. M. Christopher, and C. K. Hong. 2012. Physical and chemical changes in feather keratin during pyrolysis. Polymer Degradation and Stability 97 (3):297–307. doi:10.1016/j.polymdegradstab.2011.12.018.
  • Erman, S., J. F. Stanzione III, K. H. Reno, R. P. Wool, and E. N. M. Melissa. 2013. Pyrolyzed chicken feather fibers for biobased composite reinforcement. Journal of Applied Polymer Science 128 (2):983–89. doi:10.1002/app.38163.
  • Fink, A. 1998. Conducting literature research reviews: From paper to the internet. Thousand Oaks, CA: Sage Publications, Inc.
  • Firoozeh, P., S. Ostovar Pour, A. H. J. Oliver, P. M. Smooker, R. Brkljača, F. Sherkat, E. W. Blanch, A. Gupta, and R. A. Shanks. 2019. Extraction of keratin from waste chicken feathers using sodium sulfide and L-Cysteine. Process Biochemistry 82:205–14. doi:10.1016/j.procbio.2019.04.010.
  • Frazer, L . 2004. Chicken Electronics: A Technology Plucked from Waste, 112. National Institue of Environmental Health Sciences. doi:10.1289/ehp.112-a564.
  • Ganesh, B. N., and B. Rekha. 2013. A comparative study on tensile behaviour of plant and animal fiber reinforced composites. International Journal of Innovation and Applied Studies 2 (4):2028–9324. http://www.issr-journals.org/ijias/.
  • Gassner, G., III, W. F. Schmidt, M. J. Line, C. Thomas, and R. M. Waters. 1998. Fiber and fiber products produced from feathers. Google Patents.
  • Ghani, S. A., S. Jin Tan, and T. Soo Yeng. 2013. Properties of chicken feather fiber-filled low-density polyethylene composites: the effect of polyethylene grafted maleic anhydride. Polymer - Plastics Technology and Engineering 52 (5):495–500. doi:10.1080/03602559.2012.762018.
  • Gitashree, G., M. Mandal, and T. K. Maji. 2019. Study of properties of modified soybean oil based composite reinforced with chicken feather. Fibers and Polymers 20 (5):1061–68. doi:10.1007/s12221-019-8843-x.
  • Gokce, O., M. Kasap, G. Akpinar, and G. Ozkoc. 2017. Preparation, characterization, and in vitro evaluation of chicken feather fiber–thermoplastic polyurethane composites. Journal of Applied Polymer Science 134 (45):1–9. doi:10.1002/app.45338.
  • Gope, P. C., V. Kumar Singh, and D. Kumar Rao. 2015. Mode I fracture toughness of bio-fiber and bio-shell particle reinforced epoxy bio-composites. Journal of Reinforced Plastics and Composites 34 (13):1075–89. doi:10.1177/0731684415586277.
  • Hamoush, S. A., and M. M. El-Hawary. 1994. Feather fiber reinforced concrete. Concrete International 16 (6):33–35.
  • Hong, C. K., and R. P. Wool. 2004. Low dielectric constant material from hollow fibers and plant oil. Journal of Natural Fibers 1 (2):83–92. doi:10.1300/J395v01n02_06.
  • Hong, C. K., and R. F. Wool. 2005. Development of a bio-based composite material from soybean oil and keratin fibers. Journal of Applied Polymer Science 95 (6):1524–38. doi:10.1002/app.21044.
  • Hori, S., and Y. Shimizu. 1999. Designing methods of human interface for supervisory control systems. Control Engineering Practice 7 (11):1413–19. doi:10.1016/S0967-0661(99)00112-4.
  • Hu, P., X. Zheng, J. Zhu, and W. Baolin 2020. Effects of chicken feather keratin on smoke suppression characteristics and flame retardancy of epoxy resin. Polymers for Advanced Technologies. doi:10.1002/pat.4963.
  • Huda, S., and Y. Yang. 2008. Composites from ground chicken quill and polypropylene. Composites Science and Technology 68 (3–4):790–98. doi:10.1016/j.compscitech.2007.08.015.
  • Huda, S., and Y. Yang. 2009. Feather fiber reinforced light-weight composites with good acoustic properties. Journal of Polymers and the Environment 17 (2):131–42. doi:10.1007/s10924-009-0130-2.
  • Ibrahim, I. D., E. Rotimi Sadiku, T. Jamiru, Y. Hamam, Y. Alayli, A. Agwo Eze, and W. Kehinde Kupolati. 2019. Biopolymer composites and bionanocomposites for energy applications. Springer Singapore. doi:10.1007/978-981-13-8063-1_14.
  • Jagadeeshgouda, K. B., P. Ravinder Reddy, and K. Ishwaraprasad. 2014. Experimental study of behaviour of poultry feather fiber - a reinforcing material for composites. International Journal of Research in Engineering and Technology 03 (2):362–71. doi:10.15623/ijret.2014.0302065.
  • Janowska, G., A. Kucharska-Jastrzabek, M. Prochon, and A. Przepiorkowska. 2013. Thermal properties and combustibility of elastomer-protein composites. Journal of Thermal Analysis and Calorimetry 113 (2):933–38. doi:10.1007/s10973-012-2796-2.
  • Khosa, M. A., W. Jianping, and A. Ullah. 2013. Chemical modification, characterization, and application of chicken feathers as novel biosorbents. Rsc Advances 3 (43):20800–10. doi:10.1039/c3ra43787f.
  • Khumalo, M., B. Sithole, and T. Tesfaye. 2020. Valorisation of waste chicken feathers: optimisation of keratin extraction from waste chicken feathers by sodium bisulphite, sodium dodecyl sulphate and urea. Journal of Environmental Management 262:110329. doi:10.1016/j.jenvman.2020.110329.
  • Kupolati, W. K., E. Rotimi Sadiku, A. Frattari, A. Oluwaseun Adeboje, C. Kambole, K. Samuel Mojapelo, M. Ronald Maite, et al. 2019. Biopolymers and nanocomposites in civil engineering applications. Springer Singapore. doi: 10.1007/978-981-13-8063-1_15
  • Kuru, D., A. Akpinar Borazan, and M. Guru. 2018. Effect of chicken feather and boron compounds as filler on mechanical and flame retardancy properties of polymer composite materials. Waste Management and Research 36 (11):1029–36. doi:10.1177/0734242X18804041.
  • Lau, A. K. T., and K. Hoi Yan Cheung. 2017. Natural fiber-reinforced polymer-based composites. Natural Fiber-Reinforced Biodegradable and Bioresorbable Polymer Composites 1–18.
  • Liebeck, B. M., N. Hidalgo, G. Roth, C. Popescu, and A. Böker. 2017. Synthesis and characterization of methyl cellulose/keratin hydrolysate composite membranes. Polymers 9 (12):3. doi:10.3390/polym9030091.
  • Lixin, X., A. Jiang, Z. Yang, H. Guan, H. Jia, and M. Min. 2017. Mechanical properties of CFF/MC/SF composite prepared using vacuum infusion impregnation method. Results in Physics 7:1016–21. doi:10.1016/j.rinp.2017.02.042.
  • Lucio, D. S. V., J. Luis Rivera-Armenta, V. Rivas-Orta, N. Patricia D’iaz-Zavala, U. Páramo-Garcia, N. Violeta Gallardo Rivas, and M. Yolanda Chávez Cinco. 2017. Manufacturing of composites from chicken feathers and polyvinyl chloride (PVC). In Handbook of composites from renewable materials, 159–74. Hoboken, NJ: John Wiley & Sons.
  • Maldas, D., B. V. Kokta, and C. Daneault. 1989. Influence of coupling agents and treatments on the mechanical properties of cellulose fiber-polystyrene composites. Journal of Applied Polymer Science 37 (3):751–75. doi:10.1002/app.1989.070370313.
  • Martínez-Hernández, A. L., C. Velasco-Santos, M. De Icaza, and V. M. Castano. 2005. Microstructural characterisation of keratin fibres from chicken feathers. International Journal of Environment and Pollution 23 (2):162–78. doi:10.1504/IJEP.2005.006858.
  • Martínez-Hernández, A. L., M. D.-I. Carlos Velasco-Santos, and V. M. Castano. 2007. Dynamical–mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers. Composites Part B: Engineering 38 (3):405–10. doi:10.1016/j.compositesb.2006.06.013.
  • Martínez-Hernández, A. L., and C. Velasco-Santos. 2012. Keratin fibers from chicken feathers: structure and advances in polymer composites. Keratin: Structure, Properties and Applications 1: 49–211.
  • Mei-po, H., H. Wang, J.-H. Lee, H. Chun-kit, A. K. T. Lau, J. Leng, and D. Hui. 2012. Critical factors on manufacturing processes of natural fibre composites. Composites Part B: Engineering 43 (8):3549–62. doi:10.1016/j.compositesb.2011.10.001.
  • Méndez-Hernández, M. L., J. Luis Rivera-Armenta, Z. Sandoval-Arellano, B. Adriana Salazar-Cruz, and M. Yolanda Chavez-Cinco. 2018. Evaluation of styrene content over physical and chemical properties of elastomer/Tps-Evoh/Chicken feather composites. Applications of Modified Starches 1–39.
  • Mendoza, R. C., J. O. Grande, and M. N. Acda. 2019. Effect of keratin fibers on setting and hydration characteristics of Portland cement. Journal of Natural Fibers 18 (11): 1801–1808. doi:10.1080/15440478.2019.1701604.
  • Mingjiang, Z., and R. P. Wool. 2016. Mechanical properties of composites with chicken feather and glass fibers. Journal of Applied Polymer Science 133 (45):1–7. doi:10.1002/app.44013.
  • Mishra, S. C., and N. Bihary Nayak. 2010. An investigation of dielectric properties of chicken feather reinforced epoxy matrix composite. Journal of Reinforced Plastics and Composites 29 (17):2691–97. doi:10.1177/0731684409356610.
  • Misra, M., P. Kar, G. Priyadarshan, and C. Licata. 2001. Keratin protein nano-fiber for removal of heavy metals and contaminants. MRS Online Proceedings Library Archive, 702.
  • Moher, D., A. Liberati, J. Tetzlaff, D. G. Altman, and Prisma Group. 2009. Preferred reporting items for systematic reviews and Meta-Analyses: The PRISMA statement. PLoS Medicine 6 (7):e1000097. doi:10.1371/journal.pmed.1000097.
  • Musa, B. H., and B. A. Yousif. 2015. Characterization of epoxy composites reinforced by waste bio-fibers. Iraqi Journal of Applied Physics 11 (3):15–18.
  • NagarajaGanesh, B., P. Sugumaran, and R. Sridhar. 2012. Mechanical properties of rice straw and chicken feather fibers. International Journal of Composite Materials and Manufacturing 2:22–26.
  • Nurkhasanah, U., E. Susanti, A. M. Idris, and S. Suharti. 2020. Keratin biofilm from chicken feathers. IOP Conference Series: Earth and Environmental Science 475 (1):012073. doi:10.1088/1755-1315/475/1/012073.
  • Oladele, I. O., J. A. Omotoyinbo, and S. H. Ayemidejor. 2014. Mechanical properties of chicken feather and cow hair fibre reinforced high density polyethylene composites. International Journal of Science and Technology 3 (1):66–72.
  • Oladele, I. O., A. Moses Okoro, J. Ajibade Omotoyinbo, and M. Caroline Khoathane. 2018. Evaluation of the mechanical properties of chemically modified chicken feather fibres reinforced high density polyethylene composites. Journal of Taibah University for Science 12 (1):56–63. doi:10.1080/16583655.2018.1451103.
  • Omrani, P., H. Reza Taghiyari, and M. Zolghadr. 2018. Effects of nano-clay on physical and mechanical properties of medium-density fiberboards made from wood and chicken-feather fibers and two types of resins. Drvna Industrija: Znanstveni Casopis Za Pitanja Drvne Tehnologije 69 (4):329–37. doi:10.5552/drind.2018.1761.
  • Özmen, U., and B. Okutan Baba. 2017. Thermal characterization of chicken feather pla biocomposites. Journal of Thermal Analysis and Calorimetry 129 (1):347–55. doi:10.1007/s10973-017-6188-5.
  • Park, M., H. Kyoung Shin, B.-S. Kim, M. Jin Kim, I.-S. Kim, B.-Y. Park, and H.-Y. Kim. 2015. Effect of discarded keratin-based biocomposite hydrogels on the wound healing process in vivo. Materials Science and Engineering: C 55:88–94. doi:10.1016/j.msec.2015.03.033.
  • Paşayev, N., S. Kocatepe, and N. Maraş. 2019. Investigation of sound absorption properties of nonwoven webs produced from chicken feather fibers. Journal of Industrial Textiles 48 (10):1616–35. doi:10.1177/1528083718766843.
  • Rajaprakash, B. M., and S. Sandesh Kiran. 2019. Physical and mechanical characteristics of feather fiber based filled circular tube. International Journal of Engineering Research & Technology 8:891–900.
  • Ramakrishnan, N., S. Sharma, A. Gupta, and B. Yahya Alashwal. 2018. Keratin based bioplastic film from chicken feathers and its characterization. International Journal of Biological Macromolecules 111:352–58. doi:10.1016/j.ijbiomac.2018.01.037.
  • Reddy, N., and Y. Yang. 2007. Structure and properties of chicken feather barbs as natural protein fibers. Journal of Polymers and the Environment 15 (2):81–87. doi:10.1007/s10924-007-0054-7.
  • Reddy, N., Q. Jiang, E. Jin, Z. Shi, X. Hou, and Y. Yang. 2013. Bio-thermoplastics from grafted chicken feathers for potential biomedical applications. Colloids and Surfaces. B, Biointerfaces 110:51–58. doi:10.1016/j.colsurfb.2013.04.019.
  • Reddy, N., L. Chen, and Y. Yang. 2013. Biothermoplastics from hydrolyzed and citric acid crosslinked chicken feathers. Materials Science and Engineering: C 33 (3):1203–08. doi:10.1016/j.msec.2012.12.011.
  • Reddy, N., J. Jiang, and Y. Yang. 2014. Biodegradable composites containing chicken feathers as matrix and jute fibers as reinforcement. Journal of Polymers and the Environment 22 (3):310–17. doi:10.1007/s10924-014-0648-9.
  • Sadiku, E. R., O. Agboola, I. David Ibrahim, M. B. Abbavaram Babu Reddy, P. N. Mabalane, W. Kehinde Kupolati, et al. 2019. Synthesis of Bio-Based and Eco-Friendly Nanomaterials for Medical and Biomedical Applications. Springer Singapore. doi:10.1007/978-981-13-8063-1_13.
  • Salehuddin, S. M. F., M. Uzir Wahit, M. Rafiq Abdul Kadir, E. Sulaiman, and N. Hayaty Abu Kasim. 2014. Mechanical and morphology properties of feather fiber composite for dental post application. Malaysian Journal of Analytical Sciences 18 (2):368–75.
  • Sanchez-Olivares, G., A. Sanchez-Solis, F. Calderas, and J. Alongi. 2017. Keratin fibres derived from tannery industry wastes for flame retarded pla composites. Polymer Degradation and Stability 140:42–54. doi:10.1016/j.polymdegradstab.2017.04.011.
  • Saravana Bavan, D., and G. C. Mohan Kumar. 2010. Potential use of natural fiber composite materials in india. Journal of Reinforced Plastics and Composites 29 (24):3600–13. doi:10.1177/0731684410381151.
  • Saravanan, S., D. K. Sameera, A. Moorthi, and N. Selvamurugan. 2013. Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering. International Journal of Biological Macromolecules 62:481–86. doi:10.1016/j.ijbiomac.2013.09.034.
  • Saravanan, K., and C. Prakash. 2020. Effect of processing conditions on flexural strength properties of chicken feather fibre (cff) and its hybrid composites with polypropylene resin. Journal of Natural Fibers 17 (7):933–44. doi:10.1080/15440478.2018.1539941.
  • Saucedo-Rivalcoba, V., A. L. Martínez-Hernández, G. Martínez-Barrera, C. Velasco-Santos, J. L. Rivera-Armenta, and V. M. Castaño. 2011. Removal of hexavalent chromium from water by polyurethane-keratin hybrid membranes. Water, Air, and Soil Pollution 218 (1–4):557–71. doi:10.1007/s11270-010-0668-6.
  • Schmidt, W. F., and M. J. Line. 1996. Physical and chemical structures of poultry feather fiber fractions in fiber process development. In Nonwovens Conference, Tappi Press, 135–40.
  • Schmidt, W. F. 1998. Innovative Feather Utilization Strategies. In Proceedings of the 1998 National Poultry Waste Management Symposium, Auburn University, 19–22.
  • Schmidt, W. F., and S. Jayasundera. 2004. Microcrystalline avian keratin protein fibers. in Natural Fibers, Plastics and Composites, 51–66. Boston, MA: Springer. doi:10.1007/978-1-4419-9050-1_4.
  • Schneider, J. P., G. E. Myers, C. M. Clemons, and B. W. English. 1995. Biofibers as reinforcing fillers in thermoplastic composites. Journal of Vinyl and Additive Technology 1 (2):103–08. doi:10.1002/vnl.730010212.n.
  • Sharma, A. K. 2016. Chicken feather as a substitute of fine aggregate in mortar. Journal of Emerging Technologies and Innovative Research 3 (6):35–48.
  • Shih, J. C. H. 1993. Recent development in poultry waste digestion and feather utilization: A review. Poultry Science 72 (9):1617–20. doi:10.3382/ps.0721617.
  • Soubhagya, M., A. Champati, H. K. Popalghat, P. Patel, and K. R. Sneha. 2019. Poultry waste management: an approach for sustainable development. International Journal of Advanced Scientific Research 4 (1):8–14.
  • Srivatsav, V., M. R. Ch Ravishankar, Y. Jyothi, and T. N. Bhanuparakash. 2018. Mechanical and thermal properties of chicken feather reinforced epoxy composite. In AIP Conference Proceedings, vol. 1992, 40034. doi:10.1063/1.5047999
  • Subramani, T., S. Krishnan, S. K. Ganesan, and G. Nagarajan. 2014. Investigation of mechanical properties in polyester and phenylester composites reinforced with chicken feather fiber. International Journal Engineering Research Application 4 (12):93–104.
  • Tesfaye, T., B. Sithole, D. Ramjugernath, and V. Chunilall. 2017a. Valorisation of chicken feathers: characterisation of chemical properties. Waste Management 68:626–35. doi:10.1016/j.wasman.2017.06.050.
  • Tesfaye, T., B. Sithole, D. Ramjugernath, V. Chunilall, T. Mokhothu, and V. Chunilall. 2017b. Valorisation of chicken feathers: characterisation of physical properties and morphological structure. Journal of Cleaner Production 9:27–34.
  • Tesfaye, T., B. Sithole, D. Ramjugernath, X. Lixin, A. Jiang, Z. Yang, H. Guan, et al. 2017c. Valorisation of chicken feathers: recycling and recovery routes. Journal of Cleaner Production 9:27–34. doi:10.1016/j.rinp.2017.02.042.
  • Tesfaye, T., B. Sithole, D. Ramjugernath, and T. Mokhothu. 2018. Valorisation of chicken feathers: characterisation of thermal, mechanical and electrical properties. Sustainable Chemistry and Pharmacy 9:27–34. doi:10.1016/j.scp.2018.05.003.
  • UNEP, Chung. 2020. UNEP. UN Environment Program. https://www.unep.org/news-and-stories/story/waste-not-heavy-toll-our-trash.
  • Uzun, M., E. Sancak, I. Patel, I. Usta, M. Akalin, and M. Yuksek. 2011. Mechanical behaviour of chicken quills and chicken feather fibres reinforced polymeric composites. Archives of Materials Science and Engineering 52 (2):82–86.
  • Verma, A., P. Negi, and V. Kumar Singh. 2018. Experimental investigation of chicken feather fiber and crumb rubber reformed epoxy resin hybrid composite: mechanical and microstructural characterization. Journal of the Mechanical Behavior of Materials 27 (3–4):1–24. doi:10.1515/jmbm-2018-0014.
  • Vieira, L. C., and F. Gonçalves Amaral. 2016. Barriers and strategies applying cleaner production: A systematic review. Journal of Cleaner Production 113:5–16. doi:10.1016/j.jclepro.2015.11.034.
  • Wang, B., W. Yang, J. McKittrick, and M. André Meyers. 2016. Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Progress in Materials Science 76:229–318.
  • Williams, G. I., R. P. Wool, R. P. Wool, and R. P. Wool. 2000. Composites from natural fibers and soy oil resins. Applied Composite Materials 7 (5/6):421–32. doi:10.1023/A:1026583404899.
  • Williams, C. M. 2013. Poultry waste management in developing countries. The Role of Poultry in Human Nutrition 46.
  • Winandy, J. E., J. H. Muehl, J. A. Glaeser, and W. F. Schmidt. 2007. Chicken feather fiber as an additive in MDF composites. Journal of Natural Fibers 4 (1):35–48. doi:10.1300/J395v04n01_04.
  • Wool, R. P. 2005. Bio-based composites from soybean oil and chicken feathers . In Bio-based polymers and composites, 441–447. Burlington: Elsevier Academic Press. doi:10.1016/B978-0-12-763952-9.X5000-X.
  • Worldometers. 2020. Worldometers. https://www.worldometers.info/world-population/.
  • Wrześniewska-Tosik, K., A. B. Stanislaw Zajchowski, and J. Ryszkowska. 2014. Feathers as a flame-retardant in elastic polyurethane foam. Fibres & Textiles in Eastern Europe 1 (103):119–28.
  • Yang, J., H. Pan, L. Xin, S. Sun, H. Zhang, and L. Dong. 2017. A study on the mechanical, thermal properties and crystallization behavior of poly(lactic acid)/thermoplastic poly(propylene carbonate) polyurethane blends. RSC Advances 7 (73):46183–94. doi:10.1039/c7ra07424g.
  • Zaimouglu, A. S., R. Kaugan Kagan Akbulut, and S. Arasan. 2016. Effect of freeze-thaw cycles on strength behavior of compacted chicken quill-clay composite in undrained loading. Journal of Natural Fibers 13 (3):299–308. doi:10.1080/15440478.2015.1029188.
  • Zhan, M., R. P. Wool, and J. Q. Xiao. 2011. Electrical properties of chicken feather fiber reinforced epoxy composites. Composites. Part A, Applied Science and Manufacturing 42 (3):229–33. doi:10.1016/j.compositesa.2010.11.007.
  • Zhan, M., and R. P. Wool. 2011. Mechanical properties of chicken feather fibers. Polymer Composites 32 (6):937–44. doi:10.1002/pc.21112.
  • Zhan, M., and R. P. Wool. 2013. Design and evaluation of bio-based composites for printed circuit board application. Composites. Part A, Applied Science and Manufacturing 47:22–30. doi:10.1016/j.compositesa.2012.11.014.
  • Zonglin, L., C. Reimer, M. Picard, A. K. Mohanty, and M. Misra. 2020. Characterization of chicken feather biocarbon for use in sustainable biocomposites. Frontiers in Materials 7:3. doi:10.3389/fmats.2020.00003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.