141
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Characterization of Fibers from Culms and Leaves of Arundo donax L. (Poaceae) for Handmade Paper Production

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 12805-12813 | Published online: 23 May 2022

References

  • Agnihotri, S., D. Dutt, and C. H. Tyagi. 2010. Complete characterization of bagasse of early species of Saccharum officinerum-co 89003 for pulp and paper making. BioResources 5 (2):1197–214.
  • Ajuziogu, G. C., E. O. Ojua, N. E. Abu, C. C. Onyeke, V. O. Ayogu, A. E. Nweze, and S. Nworie. 2020. Estudios comparativos de fibras de especies de madera seleccionadas en relación con sus potenciales de hacer papel. Madera Y Bosques 26:e2621968. doi:10.21829/myb.2020.2621968.
  • Akgul, M., and A. Tozluoglu. 2009. Some chemical and morphological properties of juvenile woods from beech (Fagus orientalis L.) and pine (Pinus nigra A.) plantations. Trends in Applied Sciences Research 4 (2):116–25. doi:10.3923/tasr.2009.116.125.
  • Alam, M., S. Y. Rikta, K. M. Bahauddin, T. Hasnine, and A. K. I. Kamal. 2018. Production of eco-friendly handmade paper from wastepaper and other local biomass material. Academia Journal of Environmental Science 6 (7):147–55.
  • Antal, G. 2018. Giant reed (Arundo donax L.) from ornamental plant to dedicated bioenergy species: Review of economic prospects of biomass production and utilization. International Journal of Horticultural Science 24 (1–2):39–46. doi:10.31421/IJHS/24/1-2./1545.
  • Azzini, A., D. Ciaramello, A. L. B. Salgado, and M. Tomazello Filho. 1988. Densidade básica do colmo e fibras celulósicas em progênies de Bambusa tuldoides Munro. Bragantia, Campinas 47 (2):239–46. doi:10.1590/S0006-87051988000200008.
  • Baldin, T., J. N. C. Marchiori, S. Nisgoski, M. Talgatti, and L. Denardi. 2017. Anatomy of wood and potential of cellulose and paper production of four young species of Eucalyptus L’Her. Brazilian Journal of Wood Science 8:114–26. doi:10.12953/2177-6830/rcm.v8n2p114-126.
  • Biggs, S., and D. Messerschmidt. 2005. Social responsibility in the growing handmade paper industry of Nepal. World Development 33:1821–43. doi:10.1016/j.worlddev.2005.06.002.
  • Bonfatti-Júnior, E. A., E. C. Lengowski, A. L. Andrade, I. Venson, U. K. F. G. Silva Júnior, J. C. Gonçalez, G. I. B. Muñiz, and G. I. Bolzon de Muñiz. 2019. Bamboo kraft pulping. Advances in Forestry Science 6 (4):791–96. doi:10.34062/afs.v6i4.8361.
  • Coelho, D., G. Marques, A. Gutierrez, A. J. D. Silvestre, and J. C. Del Rio. 2007. Chemical characterization of the lipophilic fraction of giant reed (Arundo donax) fibres used for pulp and paper manufacturing. Industrial Crops and Products 26:229–36. doi:10.1016/j.indcrop.2007.04.001.
  • D’Almeida, M. L. O. 1988. Celulose e papel, Vol. 2, 561p. Brazil: SENAI/IPT, São Paulo.
  • Fiore, V., T. Scalici, and A. Valenza. 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers 106:77–83. doi:10.1016/j.carbpol.2014.02.016.
  • Fiore, V., E. Piperopoulos, and L. Calabrese. 2019. Assessment of Arundo donax fibers for oil spill recovery applications. Fibers 7 (9):75. doi:10.3390/fib7090075.
  • Flores, J. A., J. J. Pastor, A. Martinez-Gabarron, F. J. Gimeno-Blanes, I. Rodríguez-Guisado, and M. J. Frutos. 2011. Arundo donax chipboard based on urea-formaldehyde resin using under 4mm particles size meets the standard criteria for indoor use. Industrial Crops and Products 34 (3):1538–42. doi:10.1016/j.indcrop.2011.05.011.
  • Franklin, G. L. 1945. Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155 (3924):51. doi:10.1038/155051a0.
  • Gessner, M. O. 2005. Proximate lignin and cellulose. In Methods to study litter decomposition. A practical guide, ed. M. A. S. Grac, F. Bärlocher, and M. O. Gessner, 101–06. Dordrecht, The Netherlands: Springer.
  • Hofmann-Gatti, T., J. C. Andreolli, T. N. Derze, S. R. da C. Freitas, and S. R. de Andrade. 1996. Reciclagem de papel moeda com utilização de anti-resistência a úmido. In 29º Congresso Anual de Celulose e Papel.” Associação brasileira técnica de celulose e papel. São Paulo, Brazil: pp. 57–58.
  • Hofmann-Gatti, T. 2018. Artes Visuais e reciclagem – A produção de papel artesanal com resíduos agrícolas no Distrito Federal. In Artes Visuais na Educação do campo – Contextos, tramas e conexões, ed. H. T. Silva and M. Guerson (Org), Vol. 1, 1 231–49. Palmas, Brasil: Editora da Universidade Federal de Tocantins.
  • Hofmann-Gatti, T., L. Presotti, P. B. Finageiv, and G. M. Lima. 2019. Reciclando papéis e vidas & meu papel: As parcerias de pesquisa e extensão da UnB com a gerência de atendimento em meio aberto – Paranoá. In Anais do II Simpósio Nacional em Socioeducação: Desafios da prática socioeducativa na atualidade, eds. Bisinoto, C., D. S. Rodrigues, and E. S. Cruz, 45–46. Brasília, Brasil.https://socioeducacao.unb.br/wp-content/uploads/2020/06/Anais-II-Simposio_2019.pdf.
  • Housseinpour, R., A. J. Latibari, R. Farnood, P. Fatehi, and S. Javad Sepiddehdam. 2010. Fiber morphology and chemical composition of rapeseed (Brassica Napus) stems. IAWA Journal 31 (4):457–64. doi:10.1163/22941932-90000035.
  • IABIN, Invasive Information Network 2019. Inter-American biodiversity information network. Available from: http://www.institutohorus.org.br/iabin/i3n/index.html. [Accessed January 25, 2019].
  • Johansen, D. A. 1940. Plant microtechnique, 523p. Bombay: Tata-MacGraw-Hill.
  • Kaur, D., N. K. Bhardwaj, and R. K. Lohchab. 2017. Prospects of rice straw as a raw material for paper making. Waste Management 60:127–39. doi:10.1016/j.wasman.2016.08.001.
  • Kiaei, M., M. Tajik, and R. Vaysi. 2014. Chemical and biometrical properties of plum wood and its application in pulp and paper production. Maderas Ciencia y tecnología 16 (3):313–22. doi:10.4067/S0718-221X2014005000024.
  • Komolwanich, T., P. Tatijarern, S. Prasertwasu, D. Khumsupan, T. Chaisuwan, A. Luengnaruemitchai, and S. Wongkasemjit. 2014. Comparative potentiality of kans grass (Saccharum spontaneum) and giant reed (Arundo donax) as lignocellulosic feedstocks for the release of monomeric sugars by microwave/chemical pretreatment. Cellulose 21:1327–40. doi:10.1007/s10570-013-0161-7.
  • Lansdown, R. V. 2013. Arundo donax. The IUCN red list of threatened species 2013. T164340A1043245.en. doi:10.2305/IUCN.UK.2013-1.RLTS.
  • Liu, Z., H. Wang, and L. Hui. 2018. “Pulping and papermaking of non-wood fibers, pulp and paper processing.” Salim Newaz Kazi, IntechOpen. Available from: https://www.intechopen.com/books/pulp-and-paperprocessing/pulping-and-papermaking-of-non-wood-fibers
  • Main, N. M., R. A. Talib, R. Ibrahim, R. A. Rahman, and A. Z. Mohamed. 2014. Suitability of Coir Fibers as Pulp and Paper. Agriculture and Agricultural Science Procedia 2:304–11. doi:10.1016/j.aaspro.2014.11.043.
  • Mariani, C., R. Cabrini, A. Danin, P. Piffanelli, A. Fricano, S. Gomarasca, M. Dicandilo, F. Grassi, and C. Soave. 2010. Origin, diffusion and reproduction of the giant reed (Arundo Donax L.): A promissing weedy energy crop. The Annals of Applied Biology 157:191–202. doi:10.1111/j.1744-7348.2010.00419.x.
  • Morais, F. P., R. A. C. Bértolo, J. M. R. Curto, M. E. C. C. Amaral, A. M. M. S. Carta, and D. V. Evtyugin. 2019. Comparative characterization of eucalyptus fibers and softwood fibers for tissue papers applications. Materials Letters 4:1–3. doi:10.1016/j.mlblux.2019.100028.
  • Nelson, T. 2011. The grass leaf developmental gradient as a platform for a systems understanding of the anatomical specialization of C4 leaves. Journal of Experimental Botany 62 (9):3039–48. doi:10.1093/jxb/err072.
  • Pascoal Neto, C., A. Seca, A. M. Nunes, M. A. Coimbra, F. Domingues, D. Evtuguin, A. Silvestre, and J. A. S. Cavaleiro. 1997. Variations in chemical composition and structure of macromolecular components in different morphological regions and maturity stages of Arundo donax. Industrial Crop and Products 6:51–58. doi:10.1016/S0926-6690(96)00205-1.
  • Pereira, S. J., G. I. B. de Muñiz, S. Nisgoski, and G. Ceccantini 2002. Morfologia e densidade básica das folhas de tucum (Bactris inundata Martius). Ciência Florestal12 ( 1):39–48. doi:10.5902/198050981699.
  • Piperopoulos, E., A. Khaskhoussi, V. Fiore, and L. Calabrese. 2021. Surface modified Arundo donax natural fibers for oil spill recovery. Journal of Natural Fibers 1–16. doi:10.1080/15440478.2021.1961343.
  • Rusch, F., G. B. Ceolin, and E. Hillig. 2019. Morphology, density and dimensions of bamboo fibers: A bibliographical compilation. Pesquisa Agropecuaria Tropical 49:e55007. Goiânia. doi:10.1590/1983-40632019v4955007.
  • San, H. P., L. K. Long, C. Z. Zhang, T. C. Hui, W. Y. Seng, F. S. Lin, A. T. Hun, and W. K. Fong. 2016. Anatomical features, fiber morphological, physical and mechanical properties of three years old new hybrid paulownia: Green paulownia. Resource Journal Forest 10:30–35. doi:10.3923/rjf.2016.30.35.
  • Scalici, T., V. Fiore, and A. Valenza. 2016. Effect of plasma treatment on the properties of Arundo donax L. leaf fibres and its bio-based epoxy composites: A preliminary study.”. Composites Part B 94:167–75. doi:10.1016/j.compositesb.2016.03.053.
  • Shatalov, A. A., and H. Pereira. 2002. Influence of stem morphology on pulp and paper properties of Arundo donax L. reed. Industrial Crops and Products 15:77–83. doi:10.1016/S0926-6690(01)00098-X.
  • Spatz, H.-C., H. Beismann, F. Bruchert, A. Emanns, and T. Speck. 1997. Biomechanics of the giant reed Arundo donax. Philosophical Transactions of the Royal Society B: Biological Sciences 1 (D–79104):352p. Freiburg i.Br., German.
  • Suárez, L., J. Castellano, F. Romero, M. D. Marrero, A. N. Benítez, and Z. Ortega. 2021. Environmental hazards of giant reed (Arundo donax L.) in the macaronesia region and its characterisation as a potential source for the production of natural fibre composites. Polymers 13:2101. doi:10.3390/polym13132101.
  • Ververis, C., K. Georghiou, N. Christodoulakis, P. Santas, and R. Santas. 2004. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products 19:245–54. doi:10.1016/j.indcrop.2003.10.006.
  • Wille, V. K. D., M. Gentil, G. R. S. Nunes, R. C. da Rosa, J. M. Jardim, C. Berger, H. W. D. Costa, D. A. Gatto, and C. Pedrazzi. 2021. Totora fibers as a new source for papermaking. Biomass Conversion and Biorefinery. doi:10.1007/s13399-021-01547-1.
  • Zenni, R. D., and S. R. Ziller. 2011. An overview of invasive plants in Brazil. Brazilian Journal of Botany 34:431–46. doi:10.1590/S0100-84042011000300016Short.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.