82
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Different Sequential Chemical Treatments Used to Obtain Bleached Cellulose from Orange Bagasse

ORCID Icon, , , &
Pages 12849-12861 | Published online: 03 Jun 2022

References

  • Agarwal, U. P., S. A. Ralph, R. S. Reiner, and C. Baez. 2016. Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–44. doi:10.1007/s10570-015-0788-7.
  • Alvarez, J., B. Hooshdaran, M. Cortazar, M. Amuito, G. Lopez, F. B. Freire, M. Haghshenasfarel, S. H. Hossein, and M. Olazar. 2018. Valorization of citrus wastes by fast pyrolysis in a conical spouted bed reactor. Fuel 224:111–20. doi:10.1016/j.fuel.2018.03.028.
  • Ashok, B., K. Nanthagopal, D. A. Perumal, J. M. Babu, A. Tiwari, and A. Sharma. 2019. An investigation on CRDi engine characteristic using renewable orange-peel oil. Energy Conversion and Management 180:1026–38. doi:10.1016/j.enconman.2018.11.047.
  • Awan, A. T., J. Tsukamoto, and L. Tasic. 2013. Orange waste as a biomass for 2G-ethanol production using lowcost enzymes and co-culture fermentation. RSC Advances 3:25071–78. doi:10.1039/c3ra4372.
  • Barbosa, A. M., T. A. F. Rocha, J. F. Saldarriaga, I. Estiati, F. B. Freire, and J. T. Freire. 2020. Alternative drying of orange bagasse in vibrofluidized bed for use in combustion. Chemical Engineering and Processing- Process Intensification 152:107941. doi:10.1016/j.cep.2020.107941.
  • Benar, P., A. R. Gonçalves, D. Mandelli, and U. Schuchardt. 1999. Eucalyptus organosolv lignins: Study of the hydroxymethylation and use in resols. Bioresource Technology 68:11–16. doi:10.1016/S0960-8524(98)00076-5.
  • Bhattacharjee, N., and A. B. Biswas. 2019. Pyrolysis of orange bagasse: Comparative study and parametric influence on the product yield and their characterization. Journal of Environmental Chemical Engineering 7:102903. doi:10.1016/j.jece.2019.102903.
  • Bicu, I., and F. Mustata. 2011. Cellulose extraction from orange peel using sulfite digestion reagents. Bioresource Technology 102:10013–19. doi:10.1016/j.biortech.2011.08.041.
  • Carrillo, I., R. T. Mendonça, M. Ago, and O. J. Rojas. 2018. Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose 25:1011–29. doi:10.1007/s10570-018-1653-2.
  • Cintrón, M. S., and D. J. Hinchliffe. 2015. FT-IR examination of the development of secondary cell wall in cotton fibers. Fibers 3:30–40. doi:10.3390/fib3010030.
  • Cypriano, D. Z., L. L. da Silva, and L. Tasic. 2018. High value-added products from the orange juice industry waste. Waste Management 79:71–78. doi:10.1016/j.wasman.2018.07.028.
  • Dai, H., Y. Huang, H. Zhang, L. Ma, H. Huang, H. Wu, and Y. Zhang. 2020. Direct fabrication of hierarchically processed pineapple peel hydrogels for efficient Congo red adsorption. Polymers 230:115599. doi:10.1016/j.carbpol.2019.115599.
  • Dence, C. W. 1992. The determination of Lignin. In Methods in lignin chemistry, ed. S. Y. Lin and C. W. Dence, 33–61. Berlin Heidelberg, Berlin: Springer.
  • Faix, O. 1988. Practical uses of FTIR spectroscopy in wood science and technology. Mikrochimica Acta 94:21–25. doi:10.1007/BF01205830.
  • Faix, O. 1991. Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–28. doi:10.1515/hfsg.1991.45.s1.21.
  • Fan, M., D. Dai, and B. Huang. 2012. Fourier transform infrared spectroscopy for natural fibres. Fourier Transform - Material Analytic. doi:10.5772/35482.
  • Ferraz Júnior, A. D. N., M. I. Etchelet, A. F. M. Braga, L. Clavijo, I. Loaces, F. Noya, and C. Etchelet. 2020. Alkaline pretreatment of yerba mate (Ilex paraguariensis) waste for unlocking low-cost cellulosic biofuel. Fuel 266:117068. doi:10.1016/j.fuel.2020.11706.
  • Ferreira, J. A., and M. J. Taherzadeh. 2020. Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresource Technology 299:122695. doi:10.1016/j.biortech.2019.122695.
  • Franco, T. S., D. C. Potulski, L. C. Viana, E. Forville, A. S. de Andrade, and G. I. B. Muniz. 2019. Nanocellulose obtained from residues of peach palm extraction (Bactris gasipaes). Carbohydrate Polymer 218:8–19. doi:10.1016/j.carbpol.2019.04.035.
  • Galano, A., J. Aburto, J. Sadhukhan, and E. Torres. 2017. A combined theoretical-experimental investigation on the mechanism of lignin pyrolysis: Role of heating rates and residence times. Journal of Analytical and Applied Pyrolysis 128:208–16. doi:10.1016/j.jaap.2017.10.009.
  • Jabbar, A., J. Militký, J. Wiener, B. M. Kale, U. Ali, and S. Rwawire. 2017. Nanocellulose coated woven jute/green epoxy composites: Characterization of mechanical and dynamic mechanical behavior. Composite Structure 161:340–49. doi:10.1016/j.compstruct.2016.11.062.
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2013. Effects of chemical treatments on hemp fibre structure. Applied Surface Science 276:13–23. doi:10.1016/j.apsusc.2013.02.086.
  • Kumari, D., and R. Singh. 2018. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renewable Sustainable Energy Reviews 90:877–91. doi:10.1016/j.rser.2018.03.111.
  • Li, H. Y., X. Chen, Y. J. Li, X. F. Cao, S. N. Sun, and R. C. Sun. 2018. The effect of ionic liquids pretreatment on the distribution and structure of alkali-soluble hemicelluloses from Eucalyptus. Separation and Purification Technology 191:364–69. doi:10.1016/j.seppur.2017.08.058.
  • López-Linares, J. C., I. Ballesteros, J. Tourán, C. Cara, E. Castro, M. Ballestro, and I. Romero. 2015. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production. Bioresource Technology 190:97–105. doi:10.1016/j.biortech.2015.04.066.
  • Lorenci, W. A., C. J. Dalmas Neto, S. V. L. Porto, D. P. de Carvalho Neto, A. C. Novak Sydney, L. A. J. Letti, S. G. Karp, L. A. Zevallos Torres, and C. R. Soccol. 2020. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance – Conventional processing and recent advances. Bioresource Technology 304:122848. doi:10.1016/j.biortech.2020.122848.
  • Mansikkamäki, P., M. Lahtinen, and K. Rissanen. 2007. The conversion from cellulose I to cellulose II in NaOH mercerization performed in alcohol-water systems: An X-ray powder diffraction study. Carbohydrate Polymers 68:35–43. doi:10.1016/j.carbpol.2006.07.01.
  • Mariño, M., L. L. D. Silva, N. Durán N, and L. Tasic. 2015. Enhanced materials from nature: Nanocellulose from citrus waste. Molecules 20:5908–23. doi:10.3390/molecules20045908.
  • Mariño, M. A., C. A. Rezende, and L. Tasic. 2018. A multistep mild process for preparation of nanocellulose from Orange bagasse. Cellulose 25:5739–50. doi:10.1007/s10570-018-1977-y.
  • Meng, F., X. Zhang, W. Yu, and Y. Zhang. 2019. Kinetic analysis of cellulose extraction from banana pseudo-stem by liquefaction in polyhydric alcohols. Industrial Crops and Products 137:377–85. doi:10.1016/j.indcrop.2019.05.02.
  • Monlau, F., P. Kaparaju, and E. Trably. 2015. Alkaline pretreatment to enhance one-stage CH4 and two-stage H2/CH4 production from sunflower stalks: Mass, energy and economical balances. Chemical Engineering Science Journal 260:377–85. doi:10.1016/j.cej.2014.08.108.
  • Mwaikambo, L. Y., and M. P. Ansell. 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal Applied Polymer Science 84:2222–34. doi:10.1002/app.10460.
  • Nam, S., A. D. French, B. D. Condon, and M. Concha. 2016. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydrate Polymers 135:1–9. doi:10.1016/j.carbpol.2015.08.035.
  • O’connor, R. T., E. F. Dupré, and D. Mitcham. 1958. Applications of infrared absorption spectroscopy to investigations of cotton and modified cottons: Part I: Physical and crystalline modifications and oxidation. Textile Research Journal 28:382–92. doi:10.1177/004051755802800503.
  • Oh, S. Y., D. I. Yoo, Y. Shin, and G. Seo. 2005. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydrate Research 340:417–28. doi:10.1016/j.carres.2004.11.027.
  • Okoro, O. V., A. Amenaghawon, D. Podstawczyk, H. A. D, M. R. Khalil, M. Anwar, P. B. Milan, L. Nie, and A. Shavandi. 2021. Fruit pomace-lignin as a sustainable biopolymer for biomedical applications. Journal of Cleaner Production 328:129498. doi:10.1016/j.jclepro.2021.129498.
  • Oliveira, T. Í. S., M. F. Rosa, F. L. Cavalcante, P. H. F. Pereira, G. K. Moates, N. Wellner, S. E. Mazzetto, K. W. Waldron, and H. M. C. Azeredo. 2016. Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chemistry 198:113–18. doi:10.1016/j.foodchem.2015.08.08.
  • Ornaghi, H. L., M. Poletto, A. J. Zattera, and S. C. Amico. 2014. Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose 21:177–88. doi:10.1007/s10570-013-0094-1.
  • Pereira, P. H. F., N. F. Souza, H. L. Ornaghi, and M. R. Freitas. 2021. Comparative analysis of different chlorine-free extraction on oil palm mesocarp fiber. Industrial Crops and Products 150:112305. doi:10.1016/j.indcrop.2020.112305.
  • Pereira, P. H. F., H. L. Ornaghi, V. Arantes, and M. O. H. Cioffi. 2021. Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydrate Research 499:108227. doi:10.1016/j.carres.2020.108227.
  • Popescu, C. M., G. Singurel, and M. C. Popescu. 2009. Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydrate Polymers 77:851–57. doi:10.1016/j.carbpol.2009.03.011.
  • Popescu, M. C., C. M. Popescu, G. Lisa, and Y. Sakata. 2011. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. Journal Molecular Structure 988:65–72. doi:10.1016/j.molstruc.2010.12.004.
  • Roussos, P. A. 2016. Orange (Citrus sinensis (L.) Osbeck). In Nutritional composition of fruit cultivars, ed. M. Simmonds & V. Preedy, pp. 469–96. Amsterdam, Netherlands: Academic Press.
  • Schwanninger, M., J. C. Rodrigues, H. Pereira, and B. Hinterstoisser. 2004. Effects of short-time vibratory ball milling on the shape of FTIR spectra of wood and cellulose. Vibrational Spectroscopy 36:23–40. doi:10.1016/j.vibspec.2004.02.003.
  • Segal, L., J. J. Creely, A. E. Martin, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Textile Research Journal 29:786–94. doi:10.1177/004051755902901003.
  • Shimizu, F. L., P. Q. Monteiro, P. H. C. Ghiraldi, R. B. Melati, F. C. Pagnocca, W. de Souza, C. Sant´-Anna, and M. Brienzo. 2018. Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Industrial crops and products 115:62–68. doi:10.1016/j.indcrop.2018.02.024.
  • Sluiter, A., B. Hames, and R. Ruiz. 2012. Determination of structural carbohydrates and lignin in biomass. American Journal of Medical Genetics. Part A 158A:2733–42. 2011. doi:10.1002/ajmg.a.35681.
  • Souza, N. F., J. A. Pinheiro, A. I. S. Brígida, J. P. S. Morais, M. S. M. Souza Filho, and M. F. Rosa. 2016. Fibrous residues of palm oil as a source of green chemical building blocks. Industrial Crops and Products 94:480–89. doi:10.1016/j.indcrop.2016.09.012.
  • Vassilev, S. V., D. Baxter, L. K. Andersen, and C. G. Vassileva. 2010. An overview of the chemical composition of biomass. Fuel 89:913–33. doi:10.1016/j.fuel.2009.10.022.
  • Wada, M., T. Kondo, and T. Okano. 2003. Thermally induced crystal transformation from cellulose Iα to Iβ. Polymers Journal 35:155–59. doi:10.1295/polymj.35.155.
  • Waldron, K. W., and R. R. Selvendran. 1990. Composition of the cell walls of different asparagus (Asparagus officinalis) tissues. Physiol Plant 80:568–75. doi:10.1111/j.1399-3054.1990.tb05680.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.