218
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Global Trends of Research Productivity in Natural Fibre Reinforced Composites: Comprehensive Scientometric Analysis

, , , &
Pages 13088-13105 | Published online: 17 Jun 2022

References

  • Adekomaya, O. 2020. Adaption of green composite in automotive part replacements: Discussions on material modification and future patronage. Environmental Science and Pollution Research 27 (8):8807–13. doi:10.1007/s11356-019-07557-x.
  • Ahmad, R., R. Hamid, and S. A. Osman. 2019. Physical and chemical modifications of plant fibres for reinforcement in cementitious composites. Advances in Civil Engineering (March 12, 2019). 1–18.
  • Andrzej, K., A. K. Bledzki, O. Faruk, and M. Huque. 2002. Physico-mechanical studies of wood fiber reinforced composites. Polymer-Plastics Technology and Engineering 41 (3):435–51. doi:10.1081/PPT-120004361.
  • Arun, K. B., G. Sangeetha, A. Srinivas, P. O. Awoyera, R. Gobinath, and V. Venkata Ramana. 2020. Models for predictions of mechanical properties of low-density self-compacting concrete prepared from mineral admixtures and pumice stone. Advances in Intelligent Systems and Computing 1057:677–90.
  • Awoyera, P., A. Adesina, and R. Gobinath. 2019. Role of recycling fine materials as filler for improving performance of concrete - a review. Australian Journal Of Civil Engineering 17 (2):85–95. doi:10.1080/14488353.2019.1626692.
  • Awoyera, P., I. Akinwumi, V. Karthika, R. Gobinath, R. Gunasekaran, and N. Lokesh. 2019a. Lightweight self-compacting concrete incorporating industrial rejects and mineral admixtures: Strength and durability assessment. Silicon 12 (8):1779–85. doi:10.1007/s12633-019-00279-2.
  • Awoyera, P., S. Karthik, P. Rao, and R. Gobinath. 2019b. Experimental and numerical analysis of large-scale bamboo-reinforced concrete beams containing crushed sand. Innovative Infrastructure Solutions 4:41. doi:10.1007/s41062-019-0228-x.
  • Awoyera, P. O., J. O. Akinmusuru, A. Shiva Krishna, R. Gobinath, B. Arunkumar, and G. Sangeetha. 2020. Model development for strength properties of laterized concrete using artificial neural network principles. Soft Computing for Problem Solving 1048:197–207.
  • Baccini, A., N. Giuseppe De, and P. Eugenio. 2019. Citation gaming induced by bibliometric evaluation: A country-level comparative analysis. Plos One 14 (9):e0221212. doi:10.1371/journal.pone.0221212.
  • Bejjam, R. B., K. Kiran Kumar, S. Venkata Sai Sudheer, and N. Praveena Devi. 2020. Experimental investigation of the effect of particle concentration and temperature on thermophysical properties of water-based metal-oxide nanofluids. Lecture Notes in Mechanical Engineering 175–82 https://doi.org/10.1007/978-981-15-1201-8_20.
  • Bollen, J., V.-D.-S. Herbert, H. Aric, and C. Ryan. 2009. A principal component analysis of 39 scientific impact measures. Plos One 4 (6):e6022. doi:10.1371/journal.pone.0006022.
  • Boopathi, L., P. Sampath, and K. Mylsamy. 2012. Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber. Composites Part B: Engineering 43 (8):3044–52. doi:10.1016/j.compositesb.2012.05.002.
  • Bourmaud, A. J., D. U. Beaugrand, V. P. Shah, and C. Baley. 2018. Towards the design of high-performance plant fibre composites. Progress in Materials Science 97:347–408.
  • Brant, L. M. S., R. S. P. Paulo, P. S. João, D. D. A. Rigueira, A. M. C. Mateus, and S. A. Wagner. 2017. Fermentative characteristics and nutritional value of elephant grass silage added with dehydrated banana peel. Acta Scientiarum. Animal Sciences 39 (2):123. doi:10.4025/actascianimsci.v39i2.33925.
  • Cichosz, S., and A. Masek. 2019. Cellulose structure and property changes indicated via wetting-drying cycles. Polymer Degradation and Stability 167:33–43. doi:10.1016/j.polymdegradstab.2019.05.033.
  • Clément, R., P. Cousin, M. Foruzanmehr, S. Elkoun, and R. Mathieu. 2018. Characterization of components of milkweed floss fiber. Separation Science and Technology 54 (18):3091–99.
  • Del Masto, A., F. Trivaudey, V. Guicheret-Retel, V. Placet, and L. Boubakar. 2019. Investigation of the possible origins of the differences in mechanical properties of hemp and flax fibres: A numerical study based on sensitivity analysis. Composites. Part A, Applied Science and Manufacturing 124 (September 2019):105488. doi:10.1016/j.compositesa.2019.105488.
  • Dungani, R., K. Myrtha, A. Subyakto, D. H. Sulaeman, A. Hadiyane, and A. Hadiyane. 2016. Agricultural waste fibers towards sustainability and advanced utilization: A review. Asian Journal of Plant Sciences 15 (1):42–55. doi:10.3923/ajps.2016.42.55.
  • Efendy, M. G. A., and K. L. Pickering. 2014. Comparison of harakeke with hemp fibre as a potential reinforcement in composites. Composites. Part A, Applied Science and Manufacturing 67:259–67. doi:10.1016/j.compositesa.2014.08.023.
  • El Oudiani, A., Y. Chaabouni, S. Msahli, and F. Sakli. 2009. Physico-chemical characterisation and tensile mechanical properties of agave Americana L fibres. Journal of the Textile Institute 100 (5):430–39. doi:10.1080/00405000701863350.
  • Fortea-Verdejo, M., B. Elias, C. Burgstaller, A. Bismarck, and L. Koon-Yang. 2017. Plant fibre-reinforced polymers: Where do we stand in terms of tensile properties? International Materials Reviews 62 (8):441–64. doi:10.1080/09506608.2016.1271089.
  • Garfield, E. 2006. The history and meaning of the journal impact factor. JAMA 295 (1):90. doi:10.1001/jama.295.1.90.
  • Gobinath, R., I. Akinwumi, O. Afolayan, S. Karthikeyan, M. Manojkumar, S. Gowtham, and A. Manikandan. 2019. Banana fibre-reinforcement of a soil stabilized with sodium silicate. Silicon 12 (2):357–63. doi:10.1007/s12633-019-00124-6.
  • Gross, P. L. K., and E. M. Gross. 1927. College libraries and chemical education. Science 66:385–89. doi:10.1126/science.66.1713.385.
  • Guna, V., I. Manikandan, K. Adithya, C. V. Akshay Koushik, C. V. Srinivas, S. Yogesh, G. S. Nagananda, V. Krishna, and R. Narendra. 2019. Biofibers and biocomposites from Sabai grass: A unique renewable resource. Carbohydrate Polymers 218:243–49. doi:10.1016/j.carbpol.2019.04.085.
  • Hamawand, I., S. Seneweera, P. Kumarasinghe, and J. Bundschuh. 2020. Nanoparticle technology for separation of cellulose, hemicellulose and lignin nanoparticles from lignocellulose biomass: A short review. Nano-Structures & Nano-Objects 24:100601. doi:10.1016/j.nanoso.2020.100601.
  • Hicks, D., and K. J. Sylvan. 2011. Equity and excellence in research funding. Minerva 49 (2):137–51. doi:10.1007/s11024-011-9170-6.
  • Hobbs, S. 1974. Fiber reinforced composite materials. US. Patent Office- US00212500A.
  • Jaspert, D., M. Ebel, A. Eckhardt, and J. Poeppelbuss. 2021. Smart retrofitting in manufacturing: A systematic review. Journal of Cleaner Production 312:127555. (20 August 2021). doi:10.1016/j.jclepro.2021.127555.
  • Jones, D., G. O. Ormondroyd, S. F. Curling, C.-M. Popescu, and M.-C. Popescu. 2017. Chemical compositions of natural fibres. Advanced High Strength Natural Fibre Composites in Construction 23–58.
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering 43 (7):2883–92. doi:10.1016/j.compositesb.2012.04.053.
  • Ku, H., H. Wang, N. Pattarachaiyakoop, and M. Trada. 2011. A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering 42 (4):856–73. doi:10.1016/j.compositesb.2011.01.010.
  • Laly, A., L. A. Pothan, Z. Oommen, and S. Thomas. 2003. Dynamic mechanical analysis of banana fiber reinforced polyester composites. Composites Science and Technology 63 (2):283–93. doi:10.1016/S0266-3538(02)00254-3.
  • Liu, H.-M., and H.-Y. Li. 2017. Soybean- The basis of yield, biomass and productivity: Application and conversion of soybean hulls. London: IntechOpen.
  • Loannidis, J. P. A., B. Jeroen, K. Richard, and W. B. Kevin. 2019. A standardized citation metrics author database annotated for scientific field. Plos Biology 17 (8):e3000384. doi:10.1371/journal.pbio.3000384.
  • Mahmoudi, N., and N. Hebbar. 2012. Study of mechanical properties of a composite-based plant fibre of the palm and thermoplastic matrices (PP). Journal of Composite Materials 48 (3):291–99. doi:10.1177/0021998312470577.
  • Misra, S., M. Hussain, A. Gupta, V. Kumar, S. Kumar, and A. Das. 2019. Fabrication and characteristic evaluation of direct metal laser sintered SiC particulate reinforced Ti6Al4V metal matrix composites. Journal of Laser Applications 31 (1):012005. doi:10.2351/1.5086982.
  • Mukhlif, F., M. Kholoud, A.-B.-N. Kamarul, and A.-E. Nader. 2019. Research direction based green communications for next era: A bibliometric analysis. 2019 IEEE Student Conference on Research and Development (SCOReD), Bandar Seri Iskandar, Malaysia: IEEE.
  • Ng, L., S. Dhar Malingam, M. Selamat, Z. Mustafa, and O. Bapokutty. 2019. A comparison study on the mechanical properties of composites based on kenaf and pineapple leaf fibres. Polymer Bulletin 77 (3):1449–63. doi:10.1007/s00289-019-02812-0.
  • Oleszek, M., K. Aleksandra, T. Jerzy, M. Mariusz, and K. Mariusz. 2014. Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresource Technology 156:303–06. doi:10.1016/j.biortech.2014.01.055.
  • Palanisamy, M., P. Kolandasamy, P. Awoyera, R. Gobinath, S. Muthusamy, T. Krishnasamy, and A. Viloria. 2020. Permeability properties of lightweight self-consolidating concrete made with coconut shell aggregate. Journal of Materials Research and Technology 9 (3):3547–57. doi:10.1016/j.jmrt.2020.01.092.
  • Peças, P., C. Hugo, S. Hafiz, and L. Marco. 2018. Natural fibre composites and their applications: A review. Journal of Composites Science 2 (4):66. doi:10.3390/jcs2040066.
  • Ramamoorthy, S., M. Skrifvars, and A. Persson. 2015. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Polymer Reviews 55 (1):107–62. doi:10.1080/15583724.2014.971124.
  • Ramesh, M., K. Palanikumar, and K. Reddy. 2017. Plant fibre based bio-composites: Sustainable and renewable green materials. Renewable and Sustainable Energy Reviews 79:558–84. doi:10.1016/j.rser.2017.05.094.
  • Ramesh, G., D. Srinath, D. Ramya, and B. V. Krishna. Forthcoming. Repair, rehabilitation and retrofitting of reinforced concrete structures by using non-destructive testing methods. Materials Today: Proceedings
  • Randić, M. 2009. Citations versus limitations of citations: Beyond hirsch index. Scientometrics 80 (3):809–18. doi:10.1007/s11192-008-2128-2.
  • Retnam, B. J. S., M. Sivapragash, and P. Pradeep. 2014. Effects of fibre orientation on mechanical properties of hybrid bamboo/glass fibre polymer composites. Bulletin of Materials Science 37 (5):1059–64. doi:10.1007/s12034-014-0045-y.
  • Saka, S. 1993. Structure and chemical composition of wood as a natural composite material. Recent Research on Wood and Wood-Based Materials 1–20.
  • Salasinska, K., and R. Joanna. 2014. The effect of filler chemical constitution and morphological properties on the mechanical properties of natural fiber composites. Composite Interfaces 22 (1):39–50. doi:10.1080/15685543.2015.984521.
  • Sanjay, M. R., G. R. Arpitha, and B. Yogesha. 2015. Study on mechanical properties of natural - Glass fibre reinforced polymer hybrid composites: A review. Materials Today Proceedings 2:2959–67. doi:10.1016/j.matpr.2015.07.264.
  • Sathishkumar, T. P. 2015. Development of snake grass fiber-reinforced polymer composite chair. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 230:273–81. doi:10.1177/1464420715569291.
  • Schmiemann, A., A. K. Bledzki, and G. W. Ehrenstein. 1990. Property variations of glass fibre reinforced polymers due to corrosive Influence. In Developments in the science and technology of composite materials, ed. J. Füller, G. Grüninger, K. Schulte, A. R. Bunsell, and A. Massiah. Dordrecht: Springer 961–966 .
  • Sfiligoj Smole, M., S. Hribernik, K. Stana Kleinschek, and T. Kreže. 2013. Plant fibres for textile and technical applications. In Advances in agrophysical research, S. Grundas and A. Stepniewski. ed., London: InTechOpen https://www.intechopen.com/chapters/44744. doi:10.5772/3341.
  • Sridhar, J., R. Gobinath, and M. S. Kırgız. Forthcoming. Comparative study for efficacy of chemically treated jute fiber and bamboo fiber on the properties of reinforced concrete beams. Journal of Natural Fibers. published online April 04, Forthcoming. https://doi.org/10.1080/15440478.2022.2054894.
  • Thangapandi, K., R. Anuradha, N. Archana, P. Muthuraman, P. O. Awoyera, and R. Gobinath. 2020. Experimental study on performance of hardened concrete using nano materials. KSCE Journal of Civil Engineering 24 (2):596–602. doi:10.1007/s12205-020-0871-y.
  • Thomas, S., C. Harrats, and G. Groeninckx. 2006. Micro-and Nanostructured Multiphase Polymer Blend Systems. Phase Morphology and Interfaces. Macromolecular Chem’stry and Physics 208(2) 233-233. Boca Raton: CRC Press .
  • Vieth, C., A. Flachenecker, and V. Siejak. 2014. Fiber composite material and method for the production thereof. European Patent Office- EP3092112A1.
  • Zainuddin, S. Y. Z., I. Ahmad, H. Kargarzadeh, I. Abdullah, and A. Dufresne. 2013. Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydrate Polymers 92 (2):2299–305. doi:10.1016/j.carbpol.2012.11.106.
  • Zhang, Y., G. Tao, L. Yuanwei, Z. Xiaohong, H. Huayu, H. Zuqiang, H. Aimin, and Q. Xingzhen. 2014. A green and efficient method for preparing acetylated cassava stillage residue and the production of all-plant fibre composites. Composites Science and Technology 102 (October 2014):139–44. doi:10.1016/j.compscitech.2014.07.028.
  • Zhang, T., G. Min, C. Lan, and L. Xiaolong. 2015. Investigations on the structure and properties of palm leaf sheath fiber. Cellulose 22 (2):1039–51. doi:10.1007/s10570-015-0570-x.
  • Zhou, Y., F. Mizi, and C. Lihui. 2016. Interface and bonding mechanisms of plant fibre composites: An overview. Composites Part B: Engineering 101 (September 2016):31–45. doi:10.1016/j.compositesb.2016.06.055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.