177
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Physico-Chemical and Mechanical Characterization of Triumfetta Pentandra Bast Fiber from the Equatorial Region of Cameroon as a Potential Reinforcement of Polymer Composites

, , , , &
Pages 13106-13119 | Published online: 21 Jun 2022

References

  • Abbass, A., M. C. Paiva, D. V. Oliveira, P. B. Lourenço, and R. Fangueiro. 2021. Insight into the effects of solvent treatment of natural fibers prior to structural composite casting: chemical, physical and mechanical evaluation. Fibers 9 (9):54. doi:10.3390/fib9090054.
  • Aji, I. S., S. M. Sapuan, E. S. Zainudin, and K. Abdan. 2009. Kenaf fibres as reinforcement for polymeric composites: A review. International Journal of Mechanical and Materials Engineering 4 (3):239–48.
  • Akonda, M., S. Alimuzzaman, D. U. Shah, and A. N. M. Rahman. 2018. Physico-mechanical, thermal and biodegradation performance of random flax/polylactic acid and unidirectional flax/polylactic acid biocomposites. Fibers 6 (4):98. doi:10.3390/fib6040098.
  • Amel, B. A., M. Tahir Paridah, R. Sudin, U. M. K. Anwar, and A. S. Hussein. 2013. Effect of fiber extraction methods on some properties of kenaf bast fiber. Industrial Crops and Products 46:117–23. doi:10.1016/j.indcrop.2012.12.015.
  • Atangana, A., Y. Serge Nnengue Evoung, F. Betene Ebanda, T. Laynde, and J. S. Tchinda. 2019. Morphological and mechanical characteristics of neuropeltis acuminatas (Na) Fibers. International Journal of Academic Research and Reflection 7:25–31.
  • Asim, Mohammad, Khalina Abdan, M Jawaid, Mohammed Nasir, Zahra Dashtizadeh, M R Ishak, and M Enamul Hoque. 2015. “A Review on Pineapple Leaves Fibre and Its Composites.” International Journal of Polymer Science 2015.
  • Baley, C., A. Le Duigou, A. Bourmaud, and P. Davies. 2012. Influence of drying on the mechanical behaviour of flax fibres and their unidirectional composites. Composites. Part A, Applied Science and Manufacturing 43 (8):1226–33. doi:10.1016/j.compositesa.2012.03.005.
  • Beakou, A., R. Ntenga, J. Lepetit, J. A. Ateba, and L. O. Ayina. 2008. Physico-chemical and microstructural characterization of ‘rhectophyllum camerunense’ plant fiber. Composites. Part A, Applied Science and Manufacturing 39 (1):67–74. doi:10.1016/j.compositesa.2007.09.002.
  • Betene, A. D. O., F. Ebanda Betene, F. Martoïa, P. J. J. Dumont, A. Atangana, and P. Marcel Anicet Noah. 2020. Physico-chemical and thermal characterization of some lignocellulosic fibres: Ananas Comosus (AC), Neuropeltis Acuminatas (NA) and Rhecktophyllum Camerunense (RC). Journal of Minerals and Materials Characterization and Engineering 8 (4):205–22. doi:10.4236/jmmce.2020.84014.
  • Betene, Achille Désiré Omgba, Fabien Ebanda Betene, Florian Martoïa, Pierre JJ Dumont, Ateba Atangana, and Pierre Marcel Anicet Noah. ”Physico-Chemical and Thermal Characterization of Some Lignocellulosic Fibres: Ananas comosus (AC), Neuropeltis acuminatas (NA) and Rhecktophyllum camerunense (RC).” Journal of Minerals and Materials Characterization and Engineering 8, no. 4 (2020): 205–222.
  • Bledzki, A. K., and J. Gassan. 1999. Composites reinforced with cellulose based fibres. Progress in Polymer Science 24 (2):221–74. doi:10.1016/S0079-6700(98)00018-5.
  • Brahimi, H. B.-T., D. E. Aizi, A. Bouhafsoun, K. Hachem, R. Mezemaze, and M. Kaid-Harche; others. 2019. Extraction and analysis of polysaccharides from tissues of retama monosperma branches. South Asian Journal of Experimental Biology 9 (5):214–21. doi:10.38150/sajeb.9(5).p214-221.
  • Buschle-Diller, G., and S. H. Zeronian. 1992. Enhancing the reactivity and strength of cotton fibers. Journal of Applied Polymer Science 45 (6):967–79. doi:10.1002/app.1992.070450604.
  • Célino, A., O. Gonçalves, F. Jacquemin, and S. Fréour. 2014. Qualitative and quantitative assessment of water sorption in natural fibres using ATR-FTIR spectroscopy. Carbohydrate Polymers 101:163–70. doi:10.1016/j.carbpol.2013.09.023.
  • Dai, D., and M. Fan. 2011. Investigation of the dislocation of natural fibres by Fourier-transform infrared spectroscopy. Vibrational Spectroscopy 55 (2):300–06. doi:10.1016/j.vibspec.2010.12.009.
  • Datta, Janusz, and Marcin Włoch. ”Preparation, morphology and properties of natural rubber composites filled with untreated short jute fibres.” Polymer Bulletin 74, no. 3 (2017): 763–782.
  • Deepa, B., Eldho Abraham, Bibin Mathew Cherian, Alexander Bismarck, Jonny J. Blaker, Laly A. Pothan, Alcides Lopes Leao, Sivoney Ferreira De Souza, and M. Kottaisamy. ”Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion.” Bioresource technology 102, no. 2 (2011): 1988–1997.
  • Elenga, R. G., G. F. Dirras, J. Goma Maniongui, P. Djemia, and M. P. Biget. 2009. On the microstructure and physical properties of untreated raffia textilis fiber. Composites. Part A, Applied Science and Manufacturing 40 (4):418–22. doi:10.1016/j.compositesa.2009.01.001.
  • Faruk, O., A. K. Bledzki, H.-P. Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science 37 (11):1552–96.
  • Gurunathan, T., S. Mohanty, and S. K. Nayak. 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites. Part A, Applied Science and Manufacturing 77:1–25.
  • Jeyapragash, R., V. Srinivasan, and S. J. M. T. P. Sathiyamurthy. 2020. Mechanical properties of natural fiber/particulate reinforced epoxy composites–A review of the literature. Materials Today: Proceedings 22:1223–27.
  • Khan, G. M. A., M. H. R. Md Shaheruzzaman, S. M. Abdur Razzaque, M. Sakinul Islam, M. Shamsul Alam, and M. S. Alam. 2009. Surface modification of okra bast fiber and its physico-chemical characteristics. Fibers and Polymers 10 (1):65–70. doi:10.1007/s12221-009-0065-1.
  • Legrand, N. B. R., M. Lucien, O. Pierre, B. Ebanda Fabien, N. Pierre Marcel, and A. Ateba Jean. 2020. Physico-Chemical and thermal characterization of a lignocellulosic fiber, extracted from the bast of cola lepidota stem. Journal of Minerals and Materials Characterization and Engineering 08 (5):377–92. doi:10.4236/jmmce.2020.85024.
  • Mejouyo, P. W. H., O. Harzallah, N. R. S. Tagne, D. Ndapeu, G. Tchemou, J. Y. Drean, and E. Njeugna. 2021. Physical and mechanical characterization of several varieties of oil palm mesocarp fibers using different cross-sectional assumptions. Journal of Natural Fibers 18 (2):175–91. doi:10.1080/15440478.2019.1612813.
  • Merotte, J., A. Le Duigou, A. Bourmaud, K. Behlouli, and C. Baley. 2016. Mechanical and acoustic behaviour of porosity controlled randomly dispersed flax/PP biocomposite. Polymer Testing 51:174–80. doi:10.1016/j.polymertesting.2016.03.002.
  • Mewoli, A. E., C. Segovia, F. Betene Ebanda, A. Ateba, P. Marcel Anicet Noah, B. Ndiwe, and A. Emmanuel Njom. 2020. Physical-chemical and mechanical characterization of the bast fibers of triumfetta cordifolia A.Rich. from the equatorial region of cameroon. Journal of Minerals and Materials Characterization and Engineering 08 (4):163–76. doi:10.4236/jmmce.2020.84011.
  • Mohammad, A., M. J. Khalina Abdan, M. Nasir, M. R. I. Zahra Dashtizadeh, and M. Enamul Hoque. 2015. A review on pineapple leaves fibre and its composites. International Journal of Polymer Science 2015 1–16 .
  • Moonart, Ukkadate, and Songkot Utara. ”Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites.” Cellulose 26, no. 12 (2019): 7271–7295.
  • Mwaikambo, L. Y., and M. P. Ansell. 1999. The effect of chemical treatment on the properties of hemp, sisal, jute and kapok for composite reinforcement. Angewandte Makromolekulare Chemie 272 (December):108–16. doi:10.1002/(sici)1522-9505(19991201)272:1<108::aid-apmc108>3.3.co;2-0.
  • Nadlene, R., S. M. Sapuan, L. Yusriah, M. R. Ishak, L. Yusriah, M. R. Ishak, M. R. Ishak, M. R. Ishak, and L. Yusriah. 2015. Material characterization of Roselle fibre (Hibiscus Sabdariffa L.) as potential reinforcement material for polymer composites. Fibres and Textiles in Eastern Europe 23 (6):23–30. doi:10.5604/12303666.1167413.
  • NagarajaGanesh, B., P. Ganeshan, P. Ramshankar, and K. Raja. 2019. Assessment of natural cellulosic fibers derived from senna auriculata for making light weight industrial biocomposites. Industrial Crops and Products 139:111546. doi:10.1016/j.indcrop.2019.111546.
  • Ntenga, R. 2007. Modélisation multi-échelle et caractérisation de l’anisotropie élastique de fibres végétales pour le renforcement de matériaux composites, In Université Blaise Pascal-Clermont-Ferrand II Université de Yaoundé.
  • Ornaghi, Heitor Luiz, Matheus Poletto, Ademir José Zattera, and Sandro Campos Amico. ”Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers.” Cellulose 21, no. 1 (2014): 177–188.
  • Ouajai, S., and R. A. Shanks. 2005. Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability 89 (2):327–35. doi:10.1016/j.polymdegradstab.2005.01.016.
  • Page, J, K., Fouzia, B., Mohamed, Gomina, M. 2017. Multi-physical properties of a structural concrete incorporating short flax fibers. Construction and Building Materials 140 (2017) . 344–353.
  • Pereira, P. H. F., M. D. F. Rosa, M. O. H. Cioffi, A. C. B. K. C. C. D. C. Milanese, H. J. C. Voorwald, and D. R. Mulinari. 2015. “Vegetal fibers in polymeric composites: A review. Pol{\i}meros 25 (1):9À22.
  • Sango, T., A. Maxime Cheumani Yona, L. Duchatel, A. Marin, M. Kor Ndikontar, N. Joly, and J.-M. Lefebvre. 2018. Step–Wise Multi–Scale Deconstruction of Banana Pseudo–Stem (Musa Acuminata) biomass and morpho–mechanical characterization of extracted long fibres for sustainable applications. Industrial Crops and Products 122:657–68. doi:10.1016/j.indcrop.2018.06.050.
  • Sedan, D. 2007. Etude des interactions physico-chimiques aux interfaces fibres de Chanvre/Ciment: Influence sur les propriétés mécaniques du composite. Limoges.
  • Segal, L. G. J. M. A., J. Creely Jr, A. E. Martin Jr, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Research Journal 29 (10):786–94. doi:10.1177/004051755902901003.
  • Senwitz, Christian, Andreas Kempe, Christoph Neinhuis, José Lau Mandombe, Makaya Futuro Branquima, and Thea Lautenschläger. 2016. “Almost Forgotten Resources--Biomechanical Properties of Traditionally Used Bast Fibers from Northern Angola.” BioResources 11 (3): 7595–7607.
  • Stanislas, T. T., J. Foba Tendo, E. Beckley Ojo, O. Fayen Ngasoh, P. Azikiwe Onwualu, E. Njeugna, and H. Savastano Junior. 2020. Production and characterization of pulp and nanofibrillated cellulose from selected tropical plants. Journal of Natural Fibers:1–17. doi:10.1080/15440478.2020.1787915.
  • Teixeira, F. P., O. da Fonseca Martins Gomes, and F. de Andrade Silva. 2019. Degradation mechanisms of curaua, hemp, and sisal fibers exposed to elevated temperatures. BioResources 14 (1):1494–511. doi:10.15376/biores.14.1.1494-1511.
  • Uddin, N., S. Miah, M. Abdul, M. A. Jalil, M. Islam, and S. Ayesha. 2017. A review on extraction, characterization and application of pineapple leaf fiber (Palf) in textiles and other fields. International Journal of Advanced Research 5 (4):112–16. doi:10.21474/IJAR01/3786.
  • Xue, L., L. G. Tabil, and S. Panigrahi. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment 15 (1):25–33. doi:10.1007/s10924-006-0042-3.
  • Yao, F., W. Qinglin, Y. Lei, W. Guo, and X. Yanjun. 2008. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability 93 (1):90–98. doi:10.1016/j.polymdegradstab.2007.10.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.