111
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Cellulose Microfibers Isolated from Yucca Leaves: Structural, Chemical, and Thermal Properties

ORCID Icon &
Pages 13120-13130 | Published online: 06 Jun 2022

References

  • Abraham, E., B. Deepa, L. Pothan, M. Jacob, S. Thomas, U. Cvelbar, and R. Anandjiwala. 2011. Extraction of nanocellulose fibrils from lignocellulosic fibres: A novel approach. Carbohydrate Polymers 86 (4):1468–75. doi:10.1016/j.carbpol.2011.06.034.
  • Alemdar, A., and M. Sain. 2008. Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresource Technology 99 (6):1664–71. doi:10.1016/j.biortech.2007.04.029.
  • Azanaw, A., A. Haile, and R. K. Gideon. 2019. Extraction and characterization of fibers from yucca elephantine plant. Cellulose 266:795–804. doi:10.1007/s10570-018-2103-x.
  • Bahloul, A., Z. Kassab, F. Aziz, H. Hannache, R. Bouhfid, A. E. K. Qaiss, M. Oumam, and M. El Achaby. 2021a. Characteristics of cellulose microfibers and nanocrystals isolated from doum tree (Chamaerops humilis var. argentea). Cellulose 28 (7):4089–103. doi:10.1007/s10570-021-03793-y.
  • Bahloul, A., Z. Kassab, M. El Bouchti, H. Hannache, M. Oumam, and M. El Achaby. 2021b. Micro-and nano-structures of cellulose from eggplant plant (Solanum melongena L) agricultural residue. Carbohydrate Polymers 253:117311. doi:10.1016/j.carbpol.2020.117311.
  • Bell, W. H., and E. F. Castetter. 1941. The utilization of yucca, sotol, and beargrass by the aborigines in the American southweast. University of New Mexico Biological Series V.5, No. 5, University of New Mexico Bulletin, Whole No. 372, Ethnobiological Studies in the American Southwest 75 (5):1–74.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydrate Polymers 134:429–37. doi:10.1016/j.carbpol.2015.08.024.
  • Brito, B. S., F. V. Pereira, J. L. Putaux, and B. Jean. 2012. Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers. Cellulose 19 (5):1527–36. doi:10.1007/s10570-012-9738-9.
  • de Oliveira, J. P., G. P. Bruni, S. L. M. El Halal, F. C. Bertoldi, A. R. G. Dias, and E. D. Rosa Zavareze. 2019. Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging. International Journal of Biological Macromolecules 124:175–84. doi:10.1016/j.ijbiomac.2018.11.205.
  • Ekunsanmi, T., and S. Tripathi. 2019. A comparison of the tensile strengths of yucca fiber extracted by microbial and chemical methods. Journal of Life Sciences 13:1–4.
  • Jonoobi, M., J. Harun, M. Mishra, and K. Oksman. 2009. Chemical composition, crystallinity and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofiber. BioResources 4 (2):626–39.
  • Kamali Moghaddam, M. 2021a. Structural and thermal properties of cellulose microfiber isolated from Typha australis by sequential alkali-oxidative treatment. Journal of Natural Fibers 1–13 doi.org/10.1080/15440478.2021.1994094.
  • Kamali Moghaddam, M. 2021b. Typha leaves fiber and its composites: A review. Journal of Natural Fibers 1–15 doi.org/10.1080/15440478.2020.1870643.
  • Kargarzadeh, H., I. Ahmad, I. Abdullah, A. Dufresne, S. Y. Zainudin, and R. M. Sheltami. 2012. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19 (3):855–66. doi:10.1007/s10570-012-9684-6.
  • Khenblouche, A., D. Bechki, M. Gouamid, K. Charradi, L. Segni, M. Hadjadj, and S. Boughali. 2019. Extraction and characterization of cellulose microfibers from Retama raetam stems. Polímeros 29 (1):1–8. doi:10.1590/0104-1428.05218.
  • Kim, U.-J., S. H. Eom, and M. Wada. 2010. Thermal decomposition of native cellulose: Influence on crystallite size. Polymer Degradation and Stability 95 (5):778–81. doi:10.1016/j.polymdegradstab.2010.02.009.
  • Kumar, A., V. Gupta, and K. K. Gaikwad. 2021. Microfibrillated cellulose from pine cone: Extraction, properties, and characterization. Biomass Conversion and Biorefinery 1–8.
  • Lee, H., S. B. A. Hamid, and S. Zain. 2014. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. The Scientific World Journal 2014:631013. doi:10.1155/2014/631013.
  • Liimatainen, H., J. Sirviö, A. Haapala, O. Hormi, and J. Niinimäki. 2011. Characterization of highly accessible cellulose microfibers generated by wet stirred media milling. Carbohydrate Polymers 83 (4):2005–10. doi:10.1016/j.carbpol.2010.11.007.
  • Maheswari, C. U., K. O. Reddy, E. Muzenda, B. Guduri, and A. V. Rajulu. 2012. Extraction and characterization of cellulose microfibrils from agricultural residue–Cocos nucifera L. Biomass and Bioenergy 46:555–63. doi:10.1016/j.biombioe.2012.06.039.
  • Manimaran, P., P. Senthamaraikannan, M. Sanjay, M. Marichelvam, and M. Jawaid. 2018. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydrate Polymers 181:650–58. doi:10.1016/j.carbpol.2017.11.099.
  • Maran, M., R. Kumar, P. Senthamaraikannan, S. Saravanakumar, S. Nagarajan, M. Sanjay, and S. Siengchin. 2022. Suitability evaluation of Sida mysorensis plant fiber as reinforcement in polymer composite. Journal of Natural Fibers 19 (5) 1659–1669 doi:10.1080/15440478.2020.1787920.
  • McLaughlin, S. P., and S. M. Schuck. 1991. Fiber properties of several species of agavacea from the southeastern United States and northern Mexico. Economic Botany 45 (4):480–86. doi:10.1007/BF02930710.
  • Moghaddam, M. K., and E. Karimi. 2020a. The effect of oxidative bleaching treatment on Yucca fiber for potential composite application. Cellulose 27 (16):9383–96. doi:10.1007/s10570-020-03433-x.
  • Moghaddam, M. K., and E. Karimi. 2020b. Structural and physical characteristics of the yucca fiber. Journal of Industrial Textiles 1528083720960756 doi.org/10.1177/1528083720960756.
  • Mohamed, M. A., W. N. Wan Salleh, J. Jaafar, and A. F. Ismail. 2016. The utilization of recycled newspaper in the production of cellulose microfiber. Advanced Materials Research 1133:644–48. https://doi.org/10.4028/www.scientific.net/AMR.1133.644.
  • Mohit, H., and V. Arul Mozhi Selvan. 2018. A comprehensive review on surface modification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymer based composites. Composite Interfaces 25 (5–7):629–67. doi:10.1080/09276440.2018.1444832.
  • Morán, J. I., V. A. Alvarez, V. P. Cyras, and A. Vázquez. 2008. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15 (1):149–59. doi:10.1007/s10570-007-9145-9.
  • Motta Neves, R., K. Silveira Lopes, M. G. Zimmermann, M. Poletto, and A. J. Zattera. 2020. Cellulose nanowhiskers extracted from TEMPO-oxidized curaua fibers. Journal of Natural Fibers 17 (9):1355–65. doi:10.1080/15440478.2019.1568346.
  • Nam, S., A. D. French, B. D. Condon, and M. Concha. 2016. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydrate Polymers 135:1–9. doi:10.1016/j.carbpol.2015.08.035.
  • Osborne, C. M. 1965. The preparation of yucca fibers: An experimental study. Memoirs of the Society for American Archaeology 19:45–50. doi:10.1017/S0081130000004378.
  • Park, S., J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson. 2010. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3 (1):1–10. doi:10.1186/1754-6834-3-10.
  • Pato, U., D. F. Ayu, E. Riftyan, F. Restuhadi, W. T. Pawenang, R. Firdaus, A. Rahma, I. S. Surono, and I. Jaswir. 2021. Physicochemical property of oil palm leaves and utilization of cellulose microfiber as probiotic encapsulant. Biodiversitas Journal of Biological Diversity 22 (7). doi:10.13057/biodiv/d220746.
  • Rambo, M. K., and M. Ferreira. 2015. Determination of cellulose crystallinity of banana residues using near infrared spectroscopy and multivariate analysis. Journal of the Brazilian Chemical Society 26:1491–99.
  • Reddy, K. O., J. Zhang, J. Zhang, and A. V. Rajulu. 2014. Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid. Carbohydrate Polymers 114:537–45. doi:10.1016/j.carbpol.2014.08.054.
  • Risite, H., M. H. Salim, B. T. Oudinot, E. H. Ablouh, H. T. Joyeux, H. Sehaqui, J. H. A. Razafimahatratra, A. E. K. Qaiss, M. El Achaby, and Z. Kassab. 2022. Artemisia annua stems a new sustainable source for cellulosic materials: Production and characterization of cellulose microfibers and nanocrystals. Waste and Biomass Valorization 1–13. doi:10.1007/s12649-022-01745-6.
  • Roman, M., and W. T. Winter. 2004. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5 (5):1671–77.
  • Saravanakumar, S., A. Kumaravel, T. Nagarajan, P. Sudhakar, and R. Baskaran. 2013. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydrate Polymers 92 (2):1928–33. doi:10.1016/j.carbpol.2012.11.064.
  • Sarikanat, M., Y. Seki, K. Sever, and C. Durmuşkahya. 2014. Determination of properties of Althaea officinalis L.(Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Composites Part B: Engineering 57:180–86. doi:10.1016/j.compositesb.2013.09.041.
  • Segal, L., J. J. Greely, A. E. Martin, and C. M. Conard. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using x-ray diffractometer. Textile Research Journal 29:786–94. doi:10.1177/004051755902901003.
  • Sharma, A., M. Thakur, M. Bhattacharya, T. Mandal, and S. Goswami. 2019. Commercial application of cellulose nano-composites–A review. Biotechnology Reports 21:e00316. doi:10.1016/j.btre.2019.e00316.
  • Sheltami, R. M., I. Abdullah, I. Ahmad, A. Dufresne, and H. Kargarzadeh. 2012. Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydrate Polymers 88 (2):772–79. doi:10.1016/j.carbpol.2012.01.062.
  • Sonia, A., and K. P. Dasan. 2013. Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa. Carbohydrate Polymers 92 (1):668–74. doi:10.1016/j.carbpol.2012.09.015.
  • Sorieul, M., A. Dickson, S. J. Hill, and H. Pearson. 2016. Plant fibre: Molecular structure and biomechanical properties, of a complex living material, influencing its deconstruction towards a biobased composite. Materials 9 (8):618. doi:10.3390/ma9080618.
  • Syafri, E., N. H. Sari, M. Mahardika, P. Amanda, and R. A. Ilyas. 2021. Isolation and characterization of cellulose nanofibers from Agave gigantea by chemical-mechanical treatment. International Journal of Biological Macromolecules 137:119–25. doi:10.1016/j.ijbiomac.2019.06.174.
  • Tanpichai, S., S. Witayakran, and A. Boonmahitthisud. 2019. Study on structural and thermal properties of cellulose microfibers isolated from pineapple leaves using steam explosion. Journal of Environmental Chemical Engineering 7 (1):102836. doi:10.1016/j.jece.2018.102836.
  • Wang, R., F. Liang, C. Jiang, Z. Jiang, J. Wang, B. Fei, N. Nan, and Z. Liu. 2018. Pyrolysis kinetics of moso bamboo. Wood and Fiber Science 50:1–11. doi:10.22382/wfs-2018-008.
  • Wu, S., J. Zhang, C. Li, F. Wang, L. Shi, M. Tao, B. Weng, B. Yan, Y. Guo, and Y. Chen. 2021. Characterization of potential cellulose fiber from cattail fiber: A study on micro/nano structure and other properties. International Journal of Biological Macromolecules 193:27–37. doi:10.1016/j.ijbiomac.2021.10.088.
  • Xiao, B., X. Sun, and R. Sun. 2001. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability 74 (2):307–19. doi:10.1016/S0141-3910(01)00163-X.
  • Yashim, M., M. Mohammad, N. Asim, A. Fudholi, and N. Abd Kadir. 2021. “Characterisation of microfibrils cellulose isolated from oil palm frond using high-intensity ultrasonication”. IOP Conference Series: Materials Science and Engineering Terengganu, Malaysia 1176 ( 1):012004.
  • Yousefi, H., T. Nishino, M. Faezipour, G. Ebrahimi, and A. Shakeri. 2011. Direct fabrication of all-cellulose nanocomposite from cellulose microfibers using ionic liquid-based nanowelding. Biomacromolecules 12 (11):4080–85. doi:10.1021/bm201147a.
  • Zhu, H., W. Luo, P. N. Ciesielski, Z. Fang, J. Zhu, G. Henriksson, M. E. Himmel, and L. Hu. 2016. Wood-derived materials for green electronics, biological devices, and energy applications. Chemical Reviews 116 (16):9305–74. doi:10.1021/acs.chemrev.6b00225.
  • Zhu, L., Z. Feng, D. Wang, J. Wu, J. Qiu, and P. Zhu. 2021. Highly-efficient isolation of cellulose microfiber from rice straw via gentle low-temperature phase transition. Cellulose 28 (11):7021–31. doi:10.1007/s10570-021-03983-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.