223
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Facile in Situ Growth of Cu(OH)2 on Cotton Fabric for Oil/Water Separation

, , , , &
Pages 13180-13191 | Published online: 21 Jun 2022

References

  • Chu, Z. L., Y. J. Feng, and S. Seeger. 2015. Oil/Water separation with selective superantiwetting/superwetting surface materials. Angewandte Chemie-International Edition 54 (8):2328–38. doi:10.1002/anie.201405785.
  • Dawy, M., and A. Nada. 2003. IR and dielectric analysis of cellulose and its derivatives. Polymer-Plastics Technology and Engineering 42 (4):643–58. doi:10.1081/ppt-120023100.
  • Dias, Y. J., A. Kolbasov, S. Sinha-Ray, B. Pourdeyhimi, and A. L. Yarin. 2020. Theoretical and experimental study of dissolution mechanism of cellulose. Journal of Molecular Liquids 312:113450. doi:10.1016/j.molliq.2020.113450.
  • Fan, H., and Z. Guo. 2020. Bioinspired surfaces with wettability: Biomolecule adhesion behaviors. Biomaterials Science 8 (6):1502–35. doi:10.1039/C9BM01729A.
  • Feng, Q. Y., Y. Q. Zhan, W. Yang, A. Sun, H. Y. Dong, Y. H. Chiao, Y. C. Liu, X. M. Chen, and Y. W. Chen. 2022. Bi-functional super-hydrophilic/underwater super-oleophobic 2D lamellar Ti3C2Tx MXene/poly (arylene ether nitrile) fibrous composite membrane for the fast purification of emulsified oil and photodegradation of hazardous organics. Journal of Colloid and Interface Science 612:156–70. doi:10.1016/j.jcis.2021.12.160.
  • French, A. D. 2020. Increment in evolution of cellulose crystallinity analysis. Cellulose 27 (10):5445–48. doi:10.1007/s10570-020-03172-z.
  • Ge, M. Z., C. Y. Cao, J. Y. Huang, X. N. Zhang, Y. X. Tang, X. R. Zhou, K. Q. Zhang, Z. Chen, and Y. K. Lai. 2018. Rational design of materials interface at nanoscale towards intelligent oil-water separation. Nanoscale Horizons 3 (3):235–60. doi:10.1039/c7nh00185a.
  • He, H. Q., Z. K. Li, L. K. Ouyang, Y. Liang, and S. J. Yuan. 2021. Hierarchical WO3@Cu(OH)(2) nanorod arrays grown on copper mesh with superwetting and self-cleaning properties for high-performance oil/water separation. Journal of Alloys and Compounds 855:157421. doi:10.1016/j.jallcom.2020.157421.
  • Li, S. H., J. Y. Huang, Z. Chen, G. Q. Chen, and Y. K. Lai. 2017. A review on special wettability textiles: Theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A 5 (1):31–55. doi:10.1039/c6ta07984a.
  • Li, Z. D., L. Zhong, T. Zhang, F. X. Qiu, X. J. Yue, and D. Y. Yang. 2019. Sustainable, flexible, and superhydrophobic functionalized cellulose aerogel for selective and versatile oil/water separation. Acs Sustainable Chemistry & Engineering 7 (11):9984–94. doi:10.1021/acssuschemeng.9b01122.
  • Li, H., S. S. Tang, W. Chen, X. X. Yang, S. Dong, T. L. Xing, Y. Zhao, and G. Q. Chen. 2022a. Robust multifunctional superhydrophobic, photocatalytic and conductive fabrics with electro-/photo-thermal self-healing ability. Journal of Colloid and Interface Science 614:1–11. doi:10.1016/j.jcis.2022.01.090.
  • Li, J., R. X. Gao, Y. Wang, T. C. Zhang, and S. J. Yuan. 2022b. Superhydrophobic palmitic acid modified Cu(OH)2/CuS nanocomposite-coated copper foam for efficient separation of oily wastewater. Colloids and Surfaces a-Physicochemical and Engineering Aspects 637. doi:10.1016/j.colsurfa.2022.128249.
  • Liu, M. J., S. T. Wang, Z. X. Wei, Y. L. Song, and L. Jiang. 2009. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Advanced Materials 21 (6):665–+. doi:10.1002/adma.200801782.
  • Liu, D., L. He, W. Lei, K. D. Klika, L. Kong, and Y. Chen. 2015. Multifunctional polymer/porous boron nitride nanosheet membranes for superior trapping emulsified oils and organic molecules. Advanced Materials Interfaces 2 (12):1500228. doi:10.1002/admi.201500228.
  • Liu, M. J., S. T. Wang, and L. Jiang. 2017. Nature-inspired superwettability systems. Nature Reviews Materials 2 (7). doi: 10.1038/natrevmats.2017.36.
  • Ma, Q. L., H. F. Cheng, A. G. Fane, R. Wang, and H. Zhang. 2016. Recent development of advanced materials with special wettability for selective oil/water separation. Small 12 (16):2186–202. doi:10.1002/smll.201503685.
  • Morgado, R. G., M. D. Pavlaki, A. Soares, and S. Loureiro. 2022. Terrestrial organisms react differently to nano and non-nano Cu(OH)(2) forms. Science of the Total Environment 807:150679. doi:10.1016/j.scitotenv.2021.150679.
  • Nikzad, E., M. H. Sabzevari, M. Ghaedi, M. H. A. Azqhandi, and F. Marahel. 2022. Graphene oxide/double-layer hydroxide hybrids for efficient crude oil-water separation. Materials Chemistry and Physics 281. doi:10.1016/j.matchemphys.2022.125917.
  • Sayyed, A. J., N. A. Deshmukh, and D. V. Pinjari. 2019. A critical review of manufacturing processes used in regenerated cellulosic fibres: Viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26 (5):2913–40. doi:10.1007/s10570-019-02318-y.
  • Segal, L., J. J. Creely, A. E. Martin, and C. M. Conrad. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer Textile Research Journal . 29 (10):786–94. doi:10.1177/004051755902901003.
  • Shah, W. A., S. Mir, S. Abbas, S. Ibrahim, L. Noureen, A. Kondinski, D. R. Turner, P. Kogerler, and M. A. Nadeem. 2019. Robust and efficient electrocatalyst for water oxidation based on 4,4 ‘-oxybis (benzoate)-linked copper(II) hydroxide layers. Inorganica Chimica Acta 497:119080. doi:10.1016/j.ica.2019.119080.
  • Sheng, J. L., Y. Xu, J. Y. Yu, and B. Ding. 2017. Robust fluorine-free superhydrophobic amino-silicone Oil/SiO2 modification of electrospun polyacrylonitrile membranes for waterproof-breathable application. Acs Applied Materials & Interfaces 9 (17):15139–47. doi:10.1021/acsami.7b02594.
  • Wang, J. S., L. B. Hu, X. Y. Zhou, S. Zhang, Q. S. Qiao, L. Xu, and S. C. Tang. 2021. Three-dimensional porous network electrodes with Cu(OH)(2) Nanosheet/Ni3S2 Nanowire 2D/1D heterostructures for remarkably cycle-stable supercapacitors. Acs Omega 6 (50):34276–85. doi:10.1021/acsomega.1c03507.
  • Xu, L. P., J. Zhao, B. Su, X. L. Liu, J. T. Peng, Y. B. A. Liu, H. L. Liu, G. Yang, L. Jiang, Y. Wen, et al. 2013. An ion-induced low-oil-adhesion organic/inorganic hybrid film for stable superoleophobicity in seawater. Advanced Materials 25 (4):606–11. doi:10.1002/adma.201203461.
  • Xue, Z. X., Y. Z. Cao, N. Liu, L. Feng, and L. Jiang. 2014. Special wettable materials for oil/water separation. Journal of Materials Chemistry A 2 (8):2445–60. doi:10.1039/c3ta13397d.
  • Yan, Y. F., L. L. He, Y. Li, D. L. Tian, X. F. Zhan, K. S. Liu, and L. Jiang. 2019. Unidirectional liquid transportation and selective permeation for oil/water separation on a gradient nanowire structured surface. Journal of Membrane Science 582:246–53. doi:10.1016/j.memsci.2019.04.011.
  • Yan, L., X. Yang, Y. Zhao, W. Yadong, R. Motlhaletsi Moutloali, B. B. Mamba, P. Sorokin, and L. Shao. 2022. Bio-inspired mineral-hydrogel hybrid coating on hydrophobic PVDF membrane boosting oil/water emulsion separation. Separation and Purification Technology 285:120383. doi:10.1016/j.seppur.2021.120383.
  • Yang, M. S., C. X. Wang, Y. S. Wei, C. D. Liu, F. C. Lei, X. F. Zhao, Z. Li, C. Zhang, and J. Yu. 2022. Construct high-precise SERS sensor by hierarchical superhydrophobic Si/Cu(OH)(2) platform for ultratrace detection of food contaminants. Sensors and Actuators B-Chemical 352:131056. doi:10.1016/j.snb.2021.131056.
  • Ye, X., D. Yu, Y. Liao, Y. Si, J. Yu, X. Yin, and B. Ding. 2022. Copper hydroxide nanosheets-assembled nanofibrous membranes for anti-biofouling water disinfection. Journal of Colloid and Interface Science 611:1–8. doi:10.1016/j.jcis.2021.11.132.
  • Yuan, R. X., J. C. Liu, Z. J. Li, Y. G. Chen, Z. H. Wang, Z. J. Liu, G. L. Jing, Y. J. Zhu, and H. Y. Wang. 2019. Ultrahigh-flux (> 190,000 L.m(−2)h(−1)) separation of oil and water by a robust and durable Cu(OH)(2) nanoneedles mesh with inverse wettability. Journal of Colloid and Interface Science 555:569–82. doi:10.1016/j.jcis.2019.08.011.
  • Yurtsever, M. 2021. Are nonwoven fabrics used in foods made of cellulose or plastic? Cellulose/plastic separation by using Schweizer’s reagent and analysis based on a sample of tea bags. Process Safety and Environmental Protection 151:188–94. doi:10.1016/j.psep.2021.05.016.
  • Zhang, C. Y., T. H. Zhang, J. Huang, T. Yan, C. F. Li, L. K. Liu, L. J. Wang, and F. P. Jiao. 2020a. Copper hydroxyphosphate nanosheets-covered robust membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for oil/water separation and visible light photodegradation. Colloids and Surfaces a-Physicochemical and Engineering Aspects 584. doi:10.1016/j.colsurfa.2019.124000.
  • Zhang, M., D. X. Liang, W. Jiang, and J. Y. Shi. 2020b. Ag@TiO(2)NPs/PU composite fabric with special wettability for separating various water-oil emulsions. Rsc Advances 10 (58):35341–48. doi:10.1039/d0ra06248k.
  • Zhang, Y. Q., J. Guo, G. Han, Y. P. Bai, Q. C. Ge, J. Ma, C. H. Lau, and L. Shao. 2021. Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Science Advances 7 (13). doi: 10.1126/sciadv.abe8706.
  • Zhang, Y. H., J. W. Liu, L. G. Ouyang, K. Zhang, G. E. Xie, and S. Z. Jiang. 2022. A facile and fast preparation of robust superhydrophobic brass mesh coated with Cu(OH)(2) nanowires by pulse electrodeposition for continuous highly efficient oil/water separation. Colloids and Surfaces a-Physicochemical and Engineering Aspects 634. doi:10.1016/j.colsurfa.2021.127968.
  • Zheng, W. W., J. Y. Huang, S. H. Li, M. Z. Ge, L. Teng, Z. Chen, and Y. K. Lai. 2021. Advanced materials with special wettability toward intelligent oily wastewater remediation. Acs Applied Materials & Interfaces 13 (1):67–87. doi:10.1021/acsami.0c18794.
  • Zhou, H., H. X. Wang, H. T. Niu, and T. Lin. 2013. Superphobicity/philicity janus fabrics with switchable, spontaneous, directional transport ability to water and oil fluids. Scientific Reports 3 (1). doi: 10.1038/srep02964.
  • Zhou, M., Z. H. Jin, L. F. Su, K. Li, H. Zhao, J. G. Hu, Z. S. Cai, and Y. P. Zhao. 2020. Hierarchical Ni(OH)(2)/Cu(OH)(2) interwoven nanosheets in situ grown on Ni-Cu-P alloy plated cotton fabric for flexible high-performance energy storage. Nanoscale Advances 2 (8):3358–66. doi:10.1039/d0na00210k.
  • Zhou, Y. Y., X. L. Gu, Z. Z. Yuan, Y. H. Li, B. Q. Wang, J. C. Yan, D. Y. Zhao, J. Y. Liu, and X. Liu. 2022. PDMS mesh with reversible super-wettability for oil/water separation. Colloids and Surfaces a-Physicochemical and Engineering Aspects 641. doi:10.1016/j.colsurfa.2022.128462.
  • Zhu, R. J., N. Sheng, Z. H. Rao, C. Y. Zhu, Y. Aoki, and H. Habazaki. 2019. Employing a T-shirt template and variant of Schweizer’s reagent for constructing a low-weight, flexible, hierarchically porous and textile-structured copper current collector for dendrite-suppressed Li metal. Journal of Materials Chemistry A 7 (47):27066–73. doi:10.1039/c9ta10912a.
  • Zuo, J. H., Y. Zhou, Z. H. Chen, T. Zhao, Q. Tan, C. L. Zhou, X. J. Zeng, S. Xu, J. Cheng, X. Wen, et al. 2022. A superwetting stainless steel mesh with Janus surface charges for efficient emulsion separation. Journal of Hazardous Materials 430:128378. doi:10.1016/j.jhazmat.2022.128378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.