109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stem Porosity Determination of Straws Using Conventional Laboratory Tests and Image Processing Methods

ORCID Icon, ORCID Icon & ORCID Icon
Pages 13201-13215 | Published online: 20 Jun 2022

References

  • Aditya, L., T. M. I. Mahlia, B. Rismanchi, H. M. Ng, M. H. Hasan, H. S. C. Metselaar, O. Muraza, and H. B. Aditiya. 2017. A review on insulation materials for energy conservation in buildings. Renewable and Sustainable Energy Reviews 73:1352–65. doi:10.1016/j.rser.2017.02.034.
  • Ahmadi, R., B. Souri, and M. Ebrahimi. 2020. Evaluation of wheat straw to insulate fired clay hollow bricks as a construction material. Journal of Cleaner Production 254:120043. doi:10.1016/j.jclepro.2020.120043.
  • Ali, M., A. Alabdulkarem, A. Nuhait, K. Al-Salem, R. Almuzaiqer, O. Bayaquob, H. Salah, A. Alsaggaf, and Z. Algafri. 2020 February. Thermal analyses of loose agave, wheat straw fibers and agave/wheat straw as new hybrid thermal insulating materials for buildings. Journal of Natural Fibers 1–16. doi:10.1080/15440478.2020.1724232.
  • Asdrubali, F., and U. Desideri. 2018. Handbook of energy efficiency in buildings: a life cycle approach. handbook of energy efficiency in buildings: a life cycle approach. ISBN: 978-0-12-812817-6. doi:10.1016/C2016-0-02638-4.
  • Bozsaky, D. 2010. The historical development of thermal insulation materials. Periodica Polytechnica Architecture 41 (2):49. doi:10.3311/pp.ar.2010-2.02.
  • Bull, J. 2012. Embodied Carbon of Insulation 6 March 2021. Embodied Carbon of Insulation. http://www.greenspec.co.uk/building-design/embodied-carbon-of-insulation/.
  • Csanády, D., O. Fenyvesi, and B. Nagy. 2021. Heat transfer in straw-based thermal insulating materials. Materials 14 (16):4408. doi:10.3390/ma14164408.
  • Dieckmann, E., R. Onsiong, B. Nagy, L. Sheldrick, and C. Cheeseman. 2021. Valorization of Waste Feathers in the Production of New Thermal Insulation Materials. Waste and Biomass Valorization 12 (2):1119–31. doi:10.1007/s12649-020-01007-3.
  • Ene, A. G., and C. Mihai. 2020. Eco-friendly thermal insulation structures based on natural and biodegradable materials for environmentally durable development. Solid State Phenomena SSP:97–102, 305. www.scientific.net/SSP.305.97.
  • Faruk, O., A. K. Bledzki, H. Peter Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science. doi:10.1016/j.progpolymsci.2012.04.003.
  • Florea, I., and D. Lucia Manea. 2019. Analysis of thermal insulation building materials based on natural fibers. Procedia Manufacturing 32:230–35. doi:10.1016/j.promfg.2019.02.207.
  • Jahanzeb, S., S. Hussain Siddique, and D. Hussain. 2021 April. Porosity and fiber orientation of banana fiber nonwoven webs using image analysis technique. Journal of Natural Fibers 1–18. doi:10.1080/15440478.2021.1904478.
  • Magwood, C. 2016. Best Walls for Building a Home. Mother Earth News 274 (February/March):52–56. .
  • Meena, S. K., R. Sahu, and R. Ayothiraman. 2019 December 1–15. Utilization of waste wheat straw fibers for improving the strength characteristics of clay. Journal of Natural Fibers doi:10.1080/15440478.2019.1691116.
  • Nagy, B., M. Marosvölgyi, and Z. Szalay. 2021. Global warming potential of building constructions based on heat and moisture transport analysis. Thermal Science 278–278. doi:10.2298/tsci210224278n.
  • Panyakaew, S., and S. Fotios. 2011. New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings 43 (7):1732–39. doi:10.1016/j.enbuild.2011.03.015.
  • Rojas, C., M. Cea, A. Iriarte, G. Valdés, R. Navia, and J. Pablo Cárdenas-R. 2019. Thermal insulation materials based on agricultural residual wheat straw and corn husk biomass, for application in sustainable buildings. Sustainable Materials and Technologies 20:e00102. doi:10.1016/j.susmat.2019.e00102.
  • Sabapathy, K. A., and S. Gedupudi. 2020. On the influence of concrete-straw-plaster envelope thermal mass on the cooling and heating loads for different climatic zones of India. Journal of Cleaner Production 276:123117. doi:10.1016/j.jclepro.2020.123117.
  • Schiavoni, S., F. D’Alessandro, F. Bianchi, and F. Asdrubali. 2016. Insulation materials for the building sector: a review and comparative analysis. Renewable and Sustainable Energy Reviews 62:988–1011. doi:10.1016/j.rser.2016.05.045.
  • Senga Kiessé, T., A. Ventura, H. M.g, V. D. W. Bogdan Cazacliu, R. Idir, and Andrianandraina. 2017. Introducing economic actors and their possibilities for action in LCA using sensitivity analysis: application to hemp-based insulation products for building applications. Journal of Cleaner Production 142:3905–16. doi:10.1016/j.jclepro.2016.10.069.
  • Shang, X., J. Yang, Q. Song, and L. Wang. 2020. Efficacy of modified rice straw fibre on properties of cementitious composites. Journal of Cleaner Production 276:124184. doi:10.1016/j.jclepro.2020.124184.
  • Sreedhara, S. S., and N. Rao Tata. 2013. A novel method for measurement of porosity in nanofiber mat using pycnometer in filtration. Journal of Engineered Fibers and Fabrics 8 (4):132–37. doi:10.1177/155892501300800408.
  • Sun, M., X. Xiangbo, C. Wang, Y. Bai, F. Chao, L. Zhang, F. Rao, and Y. Wang. 2020. Environmental burdens of the comprehensive utilization of straw: wheat straw utilization from a life-cycle perspective. Journal of Cleaner Production 259:120702. doi:10.1016/j.jclepro.2020.120702.
  • Sun, E., Y. Zhang, C. Yong, Q. Ping, H. Huang, and X. Yueding. 2021. Biological fermentation pretreatment accelerated the depolymerization of straw fiber and its mechanical properties as raw material for mulch film. Journal of Cleaner Production 284. doi:10.1016/j.jclepro.2020.124688.
  • United Nations Environment Programme. 2019. Towards a zero-emissions, efficient and resilient buildings and construction sector. 2019 Global Status Report. Global Status Report.
  • Ürge-Vorsatz, D., L. F. Cabeza, S. Serrano, C. Barreneche, and K. Petrichenko. 2015. Heating and cooling energy trends and drivers in buildings. Renewable and Sustainable Energy Reviews 41:85–98. doi:10.1016/j.rser.2014.08.039.
  • Vaitkus, S., R. Karpaviciute, S. Vejelis, and L. Lekunaite. 2014. Development and research of thermal insulation materials from natural fibres. Key Engineering Materials 604:285–88. www.scientific.net/KEM.604.285.
  • Varriale, F., and P. Jones. 2016. Forecasting future demand for domestic thermal insulation in wales. Indoor and Built Environment 25 (7):1096–113. doi:10.1177/1420326X16660354.
  • Virk, A. S., W. Hall, and J. Summerscales. 2010. Failure strain as the key design criterion for fracture of natural fibre composites. Composites Science and Technology 70 (6):995–99. doi:10.1016/j.compscitech.2010.02.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.