165
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization of Silane Treated and Untreated Citrullus lanatus Fibers Based eco-friendly Automotive Brake Friction Composites

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon
Pages 13273-13287 | Published online: 28 Jun 2022

References

  • Abdollah, M. F. B., H. Amiruddin, and M. J. Nordin. 2021. Effect of fibre length and composition on the tribological attributes of oil palm fibre polymeric composite: Organic brake friction material. Industrial Lubrication and Tribology 73 (4):614–20. doi:10.1108/ILT-01-2021-0019.
  • Ahmed, M. J., M. A. Sai Balaji, S. S. Saravanakumar, M. R. Sanjay, and P. Senthamaraikannan. 2019a. Characterization of Areva javanica fiber–A possible replacement for synthetic acrylic fiber in the disc brake pad. Journal of Industrial Textiles 49 (3):294–317. doi:10.1177/1528083718779446.
  • Ahmed, M. J., M. A. Sai Balaji, Y. Liu, and Y. Liu. 2019b. Characterization of alkaline treated Areva Javanica fiber and its tribological performance in phenolic friction composites. Materials Research Express 6 (11):115307. doi:10.1088/2053-1591/ab43ad.
  • Ahmed, J., M. A. Sai Balaji, S. S. Saravanakumar, and P. Senthamaraikannan. 2021. A comprehensive physical, chemical and morphological characterization of novel cellulosic fiber extracted from the stem of Elettaria cardamomum plant. Journal of Natural Fibers 18 (10):1460–71. doi:10.1080/15440478.2019.1691121.
  • Ahmed, K. A., S. H. R. Mohideen, M. A. S. Balaji, and P. B. Sethupathy. 2022. Synergic effect of metallic fillers as heat dissipaters in the tribological performance of a nonasbestos disk brake pad. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 236 (2):292–301. doi:10.1177/13506501211018953.
  • Basanta Kumar, P., and S. K. Sarangi. 2021. Suitability evaluation of untreated and surface-modified Eichhornia Crassipes fibers for brake pad applications. Journal of Natural Fibers Advance online publication. doi:10.1080/15440478.2021.1875379.
  • Dinesh, S., M. Bulsara, and K. N. Mistry. 2020. Tribological performance of non-asbestos brake friction material in contact with brake disc of varying topography. Industrial Lubrication and Tribology 72 (10):1277–83. doi:10.1108/ILT-04-2020-0120.
  • Ganapathy, T., R. Sathiskumar, P. Senthamaraikannan, S. S. Saravanakumar, and A. Khan. 2019. Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. International Journal of Biological Macromolecules 138:573–81. doi:10.1016/j.ijbiomac.2019.07.136.
  • Ganesh Babu, L. 2019. Influence of benzoyl chloride treatment on the tribological characteristics of Cyperus pangorei fibers based non-asbestos brake friction composites. Materials Research Express 7 (1):15303. doi:10.1088/2053-1591/ab54f1.
  • Jabihulla Shariff, M. D., S. Madhu, K. S. Chakravarthy, and J. S. N. Raju. 2020. Characterization of natural cellulose fibers from the stem of Albizia Julibrissin as reinforcement for polymer composites. Journal of Natural Fibers Advance online publication. doi:10.1080/15440478.2020.1807440.
  • Lenin Singaravelu, D., R. Vijay, and P. Filip. 2019. Influence of various cashew friction dusts on the fade and recovery characteristics of non-asbestos copper free brake friction composites. Wear 426:1129–41. doi:10.1016/j.wear.2018.12.036.
  • Manoharan, S., R. Vijay, D. Lenin Singaravelu, and M. Kchaou. 2019. Investigation on tribological and corrosion characteristics of oxide-coated steel and mild steel fiber-based brake friction composites. Industrial Lubrication and Tribology 71 (3):341–47. doi:10.1108/ILT-08-2018-0313.
  • Mayandi, K., N. Rajini, P. Pitchipoo, J. W. Jappes, and A. V. Rajulu. 2016. Extraction and characterization of new natural lignocellulosic fiber Cyperus pangorei. International Journal of Polymer Analysis and Characterization 21 (2):175–83. doi:10.1080/1023666X.2016.
  • Ramesh, M., L. Rajeshkumar, C. Deepa, M. Tamil Selvan, V. Kushvaha, and M. Asrofi. 2021. Impact of silane treatment on characterization of Ipomoea staphylina plant fiber reinforced epoxy composites. Journal of Natural Fibers Advance online publication. 1–12. doi:10.1080/15440478.2021.1902896.
  • Sai Balaji, M. A., and K. Kalaichelvan. 2013. “Influence of aramid, cellulose and acrylic fibers in NAO brake pad-effect on thermal stability and frictional characteristics.” SAE Technical Paper 2013-26-0081: 1–8. doi: 10.4271/2013-26-0081
  • Sai Balaji, M. A., K. Kalaichelvan, and S. Mohanamurugan. 2014. “Effect of varying cashew dust and resin on friction material formulation: Stability and sensitivity of μ to pressure, speed and temperature”. International Journal of Surface Science and Engineering 8 (4):327–44. doi:10.1504/IJSURFSE.2014.065837.
  • Saikrishnan, G., L. S. Jayakumari, R. Vijay, and D. Lenin Singaravelu. 2020. Influence of iron–aluminum alloy on the tribological performance of non-asbestos brake friction materials. Industrial Lubrication and Tribology 72 (1):66–78. doi:10.1108/ILT-12-2018-0441.
  • Sathickbasha, K., A. S. Selvakumar, B. Surya Rajan, and P. Hariharasakthisudhan. 2021. Multi-metal sulfide pre-blend combination on the tribological performance of the brake friction material. Industrial Lubrication and Tribology 73 (2):235–334. doi:10.1108/ILT-07-2020-0249.
  • Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis. L. Carbohydrate Polymers 186:332–43. doi:10.1016/j.carbpol.2018.01.072.
  • Singh, T. 2021a. A hybrid multiple‐criteria decision‐making approach for selecting optimal automotive brake friction composite. Material Design & Processing Communications 3 (5):e266. doi:10.1002/mdp2.266.
  • Singh, T. 2021b. Optimum design based on fabricated natural fiber reinforced automotive brake friction composites using hybrid CRITIC-MEW approach. Journal of Materials Research and Technology 14:81–92. doi:10.1016/j.jmrt.2021.06.051.
  • Singh, T. 2021c. Tribological performance of volcanic rock (perlite) filled phenolic based brake friction composites. Journal of King Saud University-Engineering Sciences Advance online publication. doi:10.1016/j.jksues.2021.12.010.
  • Singh, T. 2021d. Utilization of cement bypass dust in the development of sustainable automotive brake friction composite materials. Arabian Journal of Chemistry 14 (9):103324. doi:10.1016/j.arabjc.2021.103324.
  • Sugozu, I., I. Mutlu, and K. Banu Sugozu. 2016. The effect of colemanite on the friction performance of automotive brake friction materials. Industrial Lubrication and Tribology 68 (1):92–98. doi:10.1108/ILT-04-2015-0044.
  • Sumrith, N., L. Techawinyutham, M. R. Sanjay, R. Dangtungee, and S. Siengchin. 2020. Characterization of alkaline and silane treated fibers of ‘water hyacinth plants’ with bioepoxy ecofriendly composites. Journal of Polymers and the Environment 28 (10):2749–60. doi:10.1007/s10924-020-01810-y.
  • Sundarrajan, D., P. Pitchipoo, and S. Manoharan. 2021a. Sustainable characterization of silane treated and untreated Psidium guajava stem natural fibers based automobile brake pads. Journal of Natural Fibers Advance online publication. doi:10.1080/15440478.2021.
  • Sundarrajan, D., P. Pitchipoo, and S. Manoharan. 2021b. Synergistic effect of steel slag-Molybdenum disulfide particles on fade-recovery performances of non-asbestos organic friction material. Industrial Lubrication and Tribology 73 (2):215–20. doi:10.1108/ILT-06-2020-0216.
  • Surya Rajan, B., M. A. Sai Balaji, and S. S. Saravanakumar. 2018. Effect of chemical treatment and fiber loading on physico-mechanical properties of Prosopis juliflora fiber reinforced hybrid friction composite. Materials Research Express 6 (3):035302. doi:10.1088/2053-1591/aaf3cf.
  • Surya Rajan, B., M. A. Sai Balaji, and A. B. Mohamed Aslam Noorani. 2019. “Effect of silane surface treatment on the physico-mechanical properties of shell powder reinforced epoxy modified phenolic friction composite”. Materials Research Express 6 (6):065315. doi:10.1088/2053-1591/ab0ca5.
  • Surya Rajan, B., M. A. Saibalaji, A. M. A. Noorani, M. U. H. Khateeb, P. Hariharasakthisudan, and P. A. Doss. 2019a. Tribological performance evaluation of newly synthesized silane treated shell powders in friction composites. Materials Research Express 6 (6):065317. doi:10.1088/2053-1591/ab08e0.
  • Surya Rajan, B., M. A. Sai Balaji, and S. R. Mohideen. 2019b. Tribological performance evaluation of epoxy modified phenolic FC reinforced with chemically modified Prosopis juliflora bark fiber. Materials Research Express 6 (7):75313. doi:10.1088/2053-1591/ab07e6.
  • Thakur, V. K., M. K. Thakur, and R. K. Gupta. 2014. Raw natural fiber–based polymer composites. International Journal of Polymer Analysis and Characterization 19 (3):256–71. doi:10.1080/1023666X.2014.880016.
  • Vijay, R., D. Lenin Singaravelu, A. Vinod, M. R. Sanjay, S. Siengchin, M. Jawaid, A. Khan, and J. Parameswaranpillai. 2019. Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. International Journal of Biological Macromolecules 125:99–108. doi:10.1016/j.ijbiomac.2018.12.056.
  • Vijay, R., D. Lenin Singaravelu, and R. Jayaganthan. 2020. Development and characterization of stainless steel fiber-based copper-free brake liner formulation: A positive solution for steel fiber replacement. Friction 8 (2):396–420. doi:10.1007/s40544-019-0280-8.
  • Vijay, R., S. Manoharan, S. Arjun, A. Vinod, and D. Lenin Singaravelu. 2021. Characterization of silane-treated and untreated natural fibers from stem of Leucas aspera. Journal of Natural Fibers 18 (12):1957–73. doi:10.1080/15440478.2019.1710651.
  • Vinod, A., T. G. Yashas Gowda, R. Vijay, M. R. Sanjay, M. K. Gupta, M. Jamil, V. Kushvaha, and S. Siengchin. 2021. Novel Muntingia calabura bark fiber reinforced green-epoxy composite. Journal of Cleaner Production 294:126337. doi:10.1016/j.jclepro.2021.126337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.