112
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of Various Surface Modifications on Characterization of New Natural Cellulosic Fiber from Coconut Tree Secondary Flower Leaf Stalk Fiber (CSF)

ORCID Icon, , &
Pages 13362-13375 | Published online: 01 Jul 2022

References

  • Abdelmouleh, M., S. Boufi, M. N. Belgacem, and A. Dufresne. 2007. Short natural-fiber reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading. CompositesScienceandTechnology 67 (7–8):1627–39. doi:10.1016/j.compscitech.2006.07.003.
  • Arthanarieswaran, V. P., A. Kumaravel, and S. S. Saravanakumar. 2015. Physico-Chemical Properties of Alkali-Treated Acacia leucophloea Fibers. International Journal of Polymer Analysis and Characterization 20 (8):704–13. doi:10.1080/1023666X.2015.1081133.
  • Aziz, S. H., and M. P. Ansell. 2004. The effect of alkalization and fiber alignment on the mechanical and thermal properties of kenaf and hemp bast fiber composites. Composites Science and Technology 64 (9):1219–30. doi:10.1016/j.compscitech.2003.10.00.
  • Breakout, A., R. Ntenga, J. Lepetit, J. A. Ateba, and L. O. Ayina. 2008. Physico-chemical and microstructural characterization of ”Rhectophyllum camerunense” plant fiber.Composites Part A. Applied Science and Manufacturing 39 (1):67–74. doi:10.1016/j.compositesa.2007.09.002.
  • Cai, M., H. Takagi, A. N. Nakagaito, M. Katoh, T. Ueki, G. I. N. Waterhouse, and Y. Li. 2015. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Industrial Crops and Products 65:27–35. doi:10.1016/j.indcrop.2014.11.048.
  • Cyras, V. P., S. Iannace, J. M. Kenny, and A. Vazquez. 2001. Relationship between processing conditions and properties of a biodegradable composites based on PCL/starch and sisal fibers. Polymer Composites 22 (1):104–10. doi:10.1002/pc.10522.
  • Dash, B. N., A. K. Rana, E. M. Cadena Ch, R. J. M. Vélez, J. F. Santa, and G. Viviana Otálvaro. 2017. Natural fibers from plantain pseudostem (Musa Paradisiaca) for use in fiber-reinforced composites. Journal of Natural Fibers 14 (5):678–90. doi:10.1080/15440478.2016.1266295.
  • Elenga, R. G., G. F. Dirras, J. Goma Maniongui, P. Djemia, and M. P. Biget. 2009. On the microstructure and physical properties of untreated Raffia textilis fiber. Composites. Part A, Applied Science and Manufacturing 40:418–22. doi:10.1016/j.compositesa.2009.01.001.
  • Ganan, P., J. Cruz, S. Garbizu, A. Arbelaiz, and I. Mondragon. 2004. Stem and bunch banana fibers from cultivation wastes: Effect of treatments on physico-chemical behavior. Journal of Applied Polymer Science 94:1489–95. doi:10.1002/app.21061.
  • Helbert, W., J. Sugiyma, M. Ishihara, and S. Yamanaka. 1997. Characterization of native crystalline cellulose in the cell walls of Oomycota. Journal of Biotechnology 57 (1– 3):29–37. doi:10.1016/S0168-1656(97)00084-9.
  • Huang, G. 2009. Tensile behaviours of the coir fiber and related composites after NaOH treatment. Materials & Design 30:3931–34. doi:10.1016/j.matdes.2009.01.035.
  • Indran, S. R., R. Raj, and V. S. Sreenivasan. 2014. Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydrate Polymers 110:423–29. doi:10.1016/j.carbpol.2014.04.051.
  • Jimenez, A., and A. Bismarck. 2007. Wetting behaviour, moisture up-take and electro-kinetic properties of lignocellulosic fibers. Cellulose 14 (2):115–27. doi:10.1007/s10570-006-9092-x.
  • Kabir, M., M. H. Wang, K. T. Lau, and F. Cardon. 2012. Chemical treatments on plant based natural fibre reinforced polymer composites: An overview. Composites: Part B 43:2883–92. doi:10.1016/j.compositesb.2012.04.053.
  • Khalil, H. P. S. A., and H. D. Rozman. 2000. Rice-husk polyester composites: The effect of chemical modification of rice husk on the mechanical and dimensional stability properties. Polymer-plastics Technology and Engineering 39 (4):757–81. doi:10.1081/PPT-100100057.
  • Lu, T., M. Jiang, Z. Jiang, D. Hui, Z. Wang, and Z. Zhou. 2013. Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Composites Part B: Engineering 51:28–34. doi:10.1016/j.compositesb.2013.02.031.
  • Madhu, P., M. R. Sanjay, P. Senthamaraikannan, S. Pradeep, S. S. Saravanakumar, and B. Yogesha. 2018. A review on synthesis and characterization of commercially available natural fibers. Part-II.Journal of Natural Fibers 1–13. doi:10.1080/15440478.2017.1379045.
  • Manimaran, P., P. Senthamaraikannan, M. R. Sanjay, M. K. Marichelvam, and M. Jawaid. 2018. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydrate Polymers 181:650–58. doi:10.1016/j.carbpol.2017.11.099.
  • Mukhtar, I., Z. Leman, M. R. Ishak, and E. S. Zainudin. 2016. Sugar palm fibre and its composites: A review of recent developments. BioResources 11 (4):10756–82. doi:10.15376/biores.11.4.10756-10782.
  • Mukhtar, I., Z. Leman, M. R. Ishak, and E. S. Zainudin. 2018. Thermal and physicochemical properties of sugar palm fibre treated with borax. IOP Conference Series: Materials Science and Engineering Malaysia.368: 012038. doi:10.1088/1757-899X/368/1/012038
  • Nayak, S., and J. R. Mohanty. 2018. Influence of chemical treatment on tensile strength, water absorption, surface morphology, and thermal analysis of areca sheath fibers. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2018.1430650.
  • Owolabi, A. F., A. Ghazali, H. P. S. Abdul Khalil, A. Hassan, R. Arjmandi, M. R. Nurul Fazita, and M. K. Mohamad Haafiz. 2016. Isolation and characterization of microcrystalline cellulose from oil palm fronds using chemo-mechanical process. Wood and Fiber Science 48 (4):1–11.
  • Prithivirajan, R., P. Balasundar, R. Shyamkumar, N. Al-Harbi, T. R. Shine Kadaikunnan, and P. Narayanasamy. 2010. Characterization of cellulosic fibers from Morusalba L. stem. Journal of Natural Fibers.Xx 1–9. doi:10.1080/15440478.2018.1426079.
  • Rajkumar, R., A. Manikandan, and S. S. Saravanakumar. 2016. Physicochemical properties of alkali-treated new cellulosic fiber from cotton shell. International Journal of Polymer Analysis and Characterization 21 (4):359–64. doi:10.1080/1023666X.2016.1160509.
  • Sanjay, M. R., G. R. Arpitha, P. Senthamaraikannan, M. Kathiresan, M. A. Saibalaji, and B. Yogesha. 2018. Hybrid effect of jute/kenaf/e-glass woven fabric epoxy composites for medium load applications: Impact, inter-laminar strength and failure surface characterization.Journal of Natural Fibers. 1–13. doi:10.1080/15440478.2018.1431828.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, P. Sudhakar, and R. Baskaran. 2013. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydrate Polymers 92 (2):1928–33. doi:10.1016/j.carbpol.2012.11.064.
  • Saravanakumar, S. S., R. Rajkumar, and A. Manikandan. 2016. Physicochemical properties of alkali treated new cellulosic fiber from the cotton shell. International Journal of Polymer Analysis and Characterization (21):359–64. doi:10.1080/1023666X.2016.1160509.
  • Senthamaraikannan, P., S. S. Saravanakumar, V. P. Arthanarieswaran, and P. Sugumaran. 2016. Physico-chemical properties of new cellulosic fibers from the bark of Acacia planifrons. Journal of Polymer Analysis and Characterization 21 (3):207–13. doi:10.1080/1023666X.2016.1133138.
  • Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L. Carbohydrate Polymers 18:1–34. doi:10.1016/j.carbpol.2018.01.072.
  • Sgriccia, N., M. C. Hawley, and M. Misra. 2008. Characterization of natural fiber surfaces and natural fiber composites. Composites: PartA 39 (10):1632–37. doi:10.1016/j.compositesa.2008.07.007.
  • Shanmugasundaram, N., I. Rajendran, and T. Ram Kumar. 2018. Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydrate Polymers 195:566–75. doi:10.1016/j.carbpol.2018.04.127.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres – an exploratory investigation. Materials & Design 32 (1):453–61. doi:10.1016/j.matdes.2010.06.004.
  • Subramanian, S. G., R. Rajkumar, and T. Ramkumar. 2019. Characterization of natural cellulosic fiber from cereus hildmannianus. Journal of Natural Fibers 18:343 354. doi:10.1080/15440478.2019.1623744.
  • Thirumurugan, R., M. Jayaraj, D. Shanmugam, and T. Ramkumar. 2021. Characterization of new natural cellulosic fiber from coconut tree primary flower leaf stalk fiber (CPFLSF). Journal of Natural Fibers 18 (11):1844–56. doi:10.1080/15440478.2019.1701608.
  • Tserki, V., N. E. Zafeiropoulos, F. Simon, and C. Panayiotou. 2005. A study of the effect of acetylation and propionylation surface treatments on natural fibres.Composites Part A. Applied Science and Manufacturing 36 (8):1110–18. doi:10.1016/j.compositesa.2005.01.004.
  • Venkateshwaran, N., A. Elaya Perumal, and D. Arunsundaranayagam. 2013. Fiber surface treatment and its effect on mechanical and visco-elastic behaviour of banana/epoxy composite. Materials & Design 47:151–59. doi:10.1016/j.matdes.2012.12.001.
  • Vinayagamoorthy, R., and N. Rajeswari. 2014. Mechanical performance studies on vetiveriazizanioides/jute/glass fiber reinforced hybrid polymeric composites. Journal of Reinforced Plastics and Composites 33 (1):81–92. doi:10.1177/0731684413495934.
  • Wambua, P., J. Ivens, and I. Verpoest. 2003. Natural fibres: Can they replace glass in fibre reinforced plastics. CompositesScience and Technology 63 (9):1259–64. doi:10.1016/S0266-3538(03)00096-4.
  • Wang, B., S. Panigrahi, L. Tabil, and W. Crerar. 2007. Pre-treatment of flax fibres for use in rotationally molded biocomposites. Journal of Reinforced Plastic and Composites 26:447–63. doi:10.1177/0731684406072526.
  • Yue, Y., J. Han, G. Han, G. M. Aita, and Q. Wu. 2015. Cellulose fibers isolated from energycane bagasse using alkaline and sodium chlorite treatments: Structural, chemical and thermal properties. Industrial Crops and Products 76:355–63. doi:10.1016/j.indcrop.2015.07.006.
  • Yusoff, R. B., H. Takagi, and A. N. Nakagaito. 2016. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Industrial Crops and Products 94:562–73. doi:10.1016/j.indcrop.2016.09.017.
  • Zafeiropoulos, N. E., D. R. Williams, C. A. Baillie, and F. L. Matthews. 2002. Engineering and characterisation of the interface in flax fibre/polypropylene composite materials.Part I. Development and investigation of surface treatments.Composites Part A. Applied Science and Manufacturing 33 (8):1083–93. doi:10.1016/S1359-835X(02)00082-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.