204
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Alkaline Pretreatment Facilitate Mechanical Fibrillation of Unbleached Cellulose Pulps for Obtaining of Cellulose micro/nanofibrils (MFC)

, , , ORCID Icon, &
Pages 13385-13400 | Published online: 29 Jun 2022

references

  • Afsahi, G., K. Dimic-Misic, P. Gane, T. Budtova, T. Maloney, and T. Vourinen. 2018. The investigation of rheological and strength properties of NFC hydrogels and aerogels from hardwood pulp by short catalytic bleaching (H cat). Cellulose 25 (3):1637–55. doi:10.1007/s10570-018-1678-6.
  • ASTM, Designation 882-02. 2002. Standart Teste Method for tensile properties of thin plastic sheeting. ASTM Internacional: West Conshohocken, PA, USA.
  • Ballesteros, J. E. M., V. Santos, G. Marmol, M. Frias, and J. Fiorelli. 2017. Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications. Cellulose 24 (5):2275–86. doi:10.1007/s10570-017-1253-6.
  • Blomstedt, M., E. Kountturi, T. Vourinen. 2007. Optmising CMC sorption in order to improved tensile stiffness of hardwood pulp sheets Nordic Pulp & Paper Research Journal. 22 (3): 336–342. doi: 10.3183/npprj-2007-22-03-p336-342
  • Brito, J. O., F. G. Silva, M. M. Leao, and G. Almeida. 2008. Chemical composition changes in eucalyptus and PIN woods submitted to heat treatment. Bioresource Technology 99 (18):8545–48. doi:10.1016/j.biortech.2008.03.069.
  • Costa, T. H. F., Veja-Sanchez, M. E., Milagres, A. M. F., Scheller, H. V., Ferraz , A. 2016 Tissue-specific distribuition of hemicellulose in six different sugarcane hybrids as related to cell wall recalcitrance Biotechnology for biofuels 9 1 1–13 doi:10.1186/s13068-016-0513-2
  • Desmaisons, J., E. Boutonnet, M. Rueff, A. Dufrense, and J. Bras. 2017. A new quality index for benchmarking of different cellulose nanofibrils. Carbohydrate Polymers 174:318–29. doi:10.1016/j.carbpol.2017.06.032.
  • Dias, M. C., M. C. Mendonça, R. A. Damásio, U. L. Zidanes, F. A. Mori, S. R. Ferreira, and G. H. D. Tonoli. 2019. Influence of hemicellulose content of eucalyptus and pinus fibers on the grinding process for obtaining cellulose micro/nanofibrils. Holzforschung 73 (11):1035–46. doi:10.1515/hf-2018-0230.
  • Durães, A. F. S., J. C. Moulin, M. C. Dias, M. C. Mendonça, R. A. P. Damásio, L. G. Thygesen, and G. H. D. Tonoli. 2020. Influence of chemical pretreatments on plant fiber cell wall and their implications on the appearance of fiber dislocations. Holzforschung 74 (10):949–55. doi:10.1515/hf-2019-0237.
  • EichHorn, S. J., S. S. Rahatekar, S. Vignoli, and A. H. Windle. 2018. New horizons for cellulose nanotechnology. Philosophical Transactions of the Royal Society A 376 (2112):20170200. doi:10.1098/rsta.2017.0200.
  • Ferrer, A., E. Quintana, I. Filpponen, I. Solala, T. Vidal, A. Rodriguez, J. Laine, and O. J. Rojas. 2012. Effect of residual lignin and heteropolysaccharides in nanofibrillar cellulose and nanopaper from wood fibers. Cellulose 19 (6):2179–93. doi:10.1007/s10570-012-9788-z.
  • Fonseca, C. S., M. F. Silva, R. F. Mendes, P. R. G. Hein, A. L. Zangiacomo, H. Savastano, and G. H. D. Tonoli. 2019. Jute fibers and micro/nanofibrils as reinforcement in extruded fiber-cement composites. Construction and Building Materials 211:517–27. doi:10.1016/j.conbuildmat.2019.03.236.
  • Gharehkhani, S., E. Sadeghinezhad, S. N. Kazi, H. Yarmand, A. Badarudin, M. R. Safaei, and M. N. M. Zubir. 2015. Basic effects of pulp refining on fiber properties—A review. Carbohydrate Polymers 115:785–803. doi:10.1016/j.carbpol.2014.08.047.
  • Guimarães, M., V. R. Botero, K. M. Novack, N. Flauzino, P. Wilson, L. M. Mendes, and G. H. D. Tonoli. 2015. Preparation of cellulose nanofibrils from bamboo pulp by mechanical defibrillation for their applications in biodegradable composites. Journal of Nanoscience and Nanotechnology 15 (9):6751–68. doi:10.1166/jnn.2015.10854.
  • Guimarães Jr. , M., Botaro , V. R., Novack , K. M., Teixeira , F. G., Tonoli , G. H. D. 2015 Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Industrial Crops and Products 70 1 72–83 doi:10.1016/j.indcrop.2015.03.014
  • Gunawardhana, T., P. Banham, D. E. Richardson, A. Patti, and W. Batchelor. 2017. Upgrading waste whitewater fines from a Pinus radiata thermomechanical pulping mill. Nordic Pulp & Paper Research Journal 32 (4):656–65. doi:10.3183/npprj-2017-32-04_p656-665_batchelor.
  • Hassan, M., L. Berglund, E. Hassan, R. Abou-zeid, and K. Oksman. 2018. Effect of xylanase pretreatment of rice straw unbleached soda and neutral sulfite pulps on isolation of nanofibers and their properties. Cellulose 25 (5):2939–53. doi:10.1007/s10570-018-1779-2.
  • Hassan, M., S. M. Fadel, E. A. Ragab, S. A. E. Waffa, E. A. Hassan, L. Berglund, and K. Oskman. 2020. Water purification ultrafiltration membranes using nanofibers from unbleached and bleached rice straw. Scientific Reports 10 (1):1–9. doi:10.1038/s41598-020-60541-1.
  • He, M., G. Yang, J. Chen, X. Ji, and Q. Wang. 2018. Production and characterization of cellulose nanofibrils from different chemical and mechanical pulps. Journal of Wood Chemistry and Technology 38 (2):149–58. doi:10.1080/02773813.2017.1411368.
  • Jiang, Y., X. Liu, Q. Yang, X. Song, C. Qin, S. Wang, and K. Li. 2019. Effects of residual lignin on composition, structure and properties of mechanically defibrillated cellulose fibrils and films. Cellulose 26 (3):1577–93. doi:10.1007/s10570-018-02229-4.
  • Kalia, S., S. Boufi, A. Celli, and S. Kango. 2014. Nanofibrillated cellulose: Surface e modification and potential applications. Colloid and Polymer Science 292 (1):5–31. doi:10.1007/s00396-013-3112-9.
  • Klemm, D. 2006. Polysaccharide II 205. New York, USA: Springer. doi:10.1007/12_097.
  • Li, Z., H. Dou, Y. Fu, and M. Qin. 2015. Improving the hydrogen peroxide bleaching efficiency of aspen chemithermomechanical pulp by using chitosan. Carbohydrate Polymers 132:430–36. doi:10.1016/j.carbpol.2015.06.062.
  • Li, Z., H. Zhang, X. Wang, F. Zhang, and X. Li. 2016. Further understanding the response mechanism of lignin content to bonding properties of lignocellulosic fibers by their deformation behavior. Royal Society of Chemistry Advances 6 (110):109211–17. doi:10.1039/C6RA22457A.
  • Ling , S., Kaplan, D. L., Buehler, M. J. 2018 Nanofibrils in nature and materials engineering Nature Reviews Materials 3 4 1–15 doi:10.1038/natrevmats.2018.16
  • Martins, C. C. N., M. C. Dias, M. C. Mendonça, A. F. S. Durães, L. E. Silva, J. R. Félix, R. A. P. Damasio, and G. H. D. Tonoli. 2021. Optimizing cellulose microfibrillation with NaOH pretreatments for unbleached eucalyptus pulp. Cellulose 28 (18):1–13. doi:10.1007/s10570-021-04221-x.
  • Matos, L. C., V. D. Rompa, R. A. P. Damasio, J. A. Marconcini, and G. H. D. Tonoli. 2019. Incorporação de Nanomateriais e emulsão de ceras no desenvolvimento de papéis multicamadas. Scientia Forestalis 47 (122):177–91. doi:10.18671/scifor.v47n122.01.
  • Mckee, J., S. Hietalat, J. Seitsonen, J. Laine, E. Kontturi, and O. Ikkala. 2014. Thermoresponsive nanocellulose hydrogels with tunable mechanical properties. ACS Macro Letters 3 (3):266–70. doi:10.1021/mz400596g.
  • Mesquita , R. G. A., Mendes , L. M., Sanadi, A. R., Sena, A. R., Claro, P. I. C., Corrêa , A. C., Marconcini , J. M. 2018 Urea formaldehyde and cellulose nanocrystals adhesive: studies applied to sugarcane bagasse particleboards. Journal of Polymers and the Environmet 26 7 3040–3050 doi:10.1007/s10924-018-1189-4
  • Naderi, A., T. Lindström, and J. Sundström. 2014. Carboxymethylated nanofibrillated cellulose: Rheological studies. Cellulose 21 (3):1561–71. doi:10.1007/s10570-014-0192-8.
  • Owolabi, A. F., M. K. M. Haafiz, S. Hossain, M. H. Hussin, and M. R. N. Fazita. 2017. Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds. International Journal of Biological Macromolecules 95:1228–34. doi:10.1016/j.ijbiomac.2016.11.016.
  • Pääkkönen, T., K. Dimic-Mesic, H. Orelma, R. Ponni, T. Vourinen, and T. Maloney. 2016. Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel. Cellulose 23 (1):277–93. doi:10.1007/s10570-015-0824-7.
  • Pakutsah, K., and D. Aht-ong. 2020. Facile isolation of cellulose nanofibers from water hyacinth using water-based mechanical defibrillation: Insights into morphological, physical, and rheological properties. International Journal of Biological Macromolecules 145:64–76. doi:10.1016/j.ijbiomac.2019.12.172.
  • Rambabu, N., S. Panthapulakkal, M. Sain, and A. K. Dalai. 2016. Production of nanocellulose fibers from pine cone biomass: Evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films. Industrial Crops and Products 83:746–54. doi:10.1016/j.indcrop.2015.11.083.
  • Scatolino , M. V., Bufalino, L., Mendes, L. M., Guimarães Jr. , M., Tonoli, G. H. D. 2017 Eucalyptus wood and coffee parchment for particleboard production: Physical and mechanical propertie. Ciência e Agrotecnologia 41 1 139–146 doi:10.1007/s00226-017-0927-4
  • Siró, I., and D. Plackett. 2010. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17 (3):459–94. doi:10.1007/s10570-010-9405-y.
  • Su, Y., R. Du, H. Guo, M. Cao, Q. Wu, R. Su, W. Qi, and Z. He. 2015. Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: Characterization of its major components. Food and Bioproducts Processing 94:322–30. doi:10.1016/j.fbp.2014.04.001.
  • Syverud, K., G. Ching-carrasco, J. Toledo, and P. G. Toledo. 2011. A comparative study of eucalyptus and PIN radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydrate Polymers 84 (3):1033–38. doi:10.1016/j.carbpol.2010.12.066.
  • Tonoli , G. H. D., Holtman, K. M., Glenn, G., Fonseca, A. S., Wood, D., Williams, T., Sa, V. A., Klamczynski, A., Orts , W. J. 2016 Properties of cellulose micro/nanofibers obtaind from eucalyptus pulp fiber treated with anaerobic digestate and high shear mixing. Cellulose 23 2 1239–1256 doi:10.1007/s10570-016-0890-5
  • Tonoli, G. H. D., G. F. Carmello, C. A. Fioroni, T. L. Pereira, G. Rocha, R. B. Souza, V. M. John, and H. Savastano. 2019. Influence of the initial moisture content on the carbonation degree and performance of fiber-cement composites. Construction and Building Materials 215 22–29. doi:10.1016/j.conbuildmat.2019.04.159.
  • Visanko, M., J. A. Sirvio, P. Piltonen, R. Sliz, H. Liimatainen, and M. Illikainen. 2017. Mechanical fabrication of high-strength and redispersible wood nanofibers from unbleached groundwood pulp. Cellulose 24 (10):4173–87. doi:10.1007/s10570-017-1406-7.
  • Wallis, A. F. A., R. H. Wearne, and P. J. Wright. 1996. Chemical analysis of polysaccharides in plantation eucalypt woods and pulps. Appita Journal 49:258–62. 102.100.100/229185.
  • Wang, B., Sain, M., Oskaman , K. 2007 Study of structural morphology of hemp fiber from the micro to the nanoscale. Applied Composite Materials 14 2 89–103 doi:10.1007/s10443-006-9032-9
  • Wang, S., and Q. Cheng. 2009. A novel process to isolate fibrils from cellulose fibers by high‐intensity ultrasonication, part 1: Process optimization. Journal of Applied Polymer Science 113 (2):1270–75. doi:10.1002/app.30072.
  • Wegner, T., Jones, P. E. 2006 Advancing cellulose-based nanotechnology Cellulose 13 2 115–118 doi:10.1007/s10570-006-9056-1
  • Winter, H., C. Cerclier, N. Delorme, H. Bizot, B. Quemener, and B. Cathala. 2010. Improved colloidal stability of bacterial cellulose nanocrystal suspensions for thee laboration of spin-coated cellulose-based model surfaces. Biomacromolecules 11 (11):3144–51. doi:10.1021/bm100953f.
  • Xiao, B., X. F. Sun, and R. C. Sun. 2011. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation and Stability 74 (2):307–19. doi:10.1016/S0141-3910(01)00163-X.
  • Yusra, A. F. I., H. Juahir, A. H. Bhat, A. Endut, H. P. S. Khalil, and G. Adiana. 2018. Controlling of green nanocellulose fiber properties produced by chemo-mechanical treatment process via SEM, TEM, AFM and image analyzer characterization. Journal of Fundamental and Applied Sciences 10 (1S):1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.