595
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Sustainable Treatments of Pineapple Leaf Fibers for Polylactic Acid Based Biocomposites

ORCID Icon & ORCID Icon
Pages 13438-13456 | Published online: 12 Jul 2022

References

  • Asim, M., K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak, and M. E. Hoque. 2015. A review on pineapple leaves fibre and its composites. International Journal of Polymer Science 2015:950567. doi:10.1155/2015/950567.
  • Awal, A., M. Rana, and M. Sain. 2015. Thermorheological and mechanical properties of cellulose reinforced pla bio-composites. Mechanics of Materials 80:87–95. doi:10.1016/j.mechmat.2014.09.009.
  • Benaimeche, O., N. T. Seghir, Ł. Sadowski, and M. Mellas. 2020. The utilization of vegetable fibers in cementitious materials. In Encyclopedia of renewable and sustainable materials, ed. S. Hashmi and I. A. Choudhury, 649–62. Amsterdam: Elsevier.
  • Bledzki, A. K., O. Faruk, and M. Huque. 2002. Physico-mechanical studies of wood fiber reinforced composites. Polymer-Plastics Technology and Engineering 41 (3):435–51. doi:10.1081/PPT-120004361.
  • Bright, B. M., B. J. Selvi, S. A. Hassan, M. M. Jaafar, S. Suchart, M. R. Sanjay, and B. K. Nagaraj. 2021. Characterization of natural cellulosic fiber from cocos nucifera peduncle for sustainable biocomposites. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2021.1982827.
  • Cavdar, A. D., F. Mengeloğlu, and K. Karakus. 2015. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement 60:6–12. doi:10.1016/j.measurement.2014.09.078.
  • Chaitanya, S., and I. Singh. 2016. Novel aloe vera fiber reinforced biodegradable composites – Development and characterization. Journal of Reinforced Plastics and Composites 35 (19):1411–23. doi:10.1177/0731684416652739.
  • Chaitanya, S., and I. Singh. 2018a. Ecofriendly treatment of aloe vera fibers for PLA based green composites. International Journal of Precision Engineering and Manufacturing - Green Technology 5 (1):143–50. doi:10.1007/s40684-018-0015-8.
  • Chaitanya, S., and I. Singh. 2018b. Sisal fiber‐reinforced green composites: Effect of ecofriendly fiber treatment. Polymer Composites 39 (12):4310–21. doi:10.1002/pc.24511.
  • Edeerozey, A. M. M., H. M. Akil, A. B. Azhar, and M. I. Z. Ariffin. 2007. Chemical modification of kenaf fibers. Materials Letters 61 (10):2023–25. doi:10.1016/j.matlet.2006.08.006.
  • Ergun, R., J. Guo, and B. H. Keese. 2016. Cellulose. In Encyclopedia of food and health, ed. B. Caballero, P. Finglas, and F. Toldrá, 694–702. Waltham: Elsevier.
  • Fiore, V., T. Scalici, F. Nicoletti, G. Vitale, M. Prestipino, and A. Valenza. 2016. A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Composites Part B: Engineering 85:150–60. doi:10.1016/j.compositesb.2015.09.028.
  • Gopinath, R., P. Billigraham, T. P. Sathishkumar, M. R. Sanjay, and S. Siengchin. 2021. Characterization of sida acuta fiber and its polymer composites with effect of fly ash. Journal of Natural Fibers 1–19. doi:10.1080/15440478.2021.1967833.
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering 43 (7):2883–92. doi:10.1016/j.compositesb.2012.04.053.
  • Kalita, E., B. K. Nath, P. Deb, F. Agan, M. R. Islam, and K. Saikia. 2015. High quality fluorescent cellulose nanofibers from endemic rice husk: Isolation and characterization. Carbohydrate Polymers 122:308–13. doi:10.1016/j.carbpol.2014.12.075.
  • Komal, U. K., V. Verma, T. Ashwani, N. Verma, and I. Singh. 2020. Effect of chemical treatment on thermal, mechanical and degradation behavior of banana fiber reinforced polymer composites. Journal of Natural Fibers 17 (7):1026–38. doi:10.1080/15440478.2018.1550461.
  • Komal, U. K., M. K. Lila, and I. Singh. 2020. PLA/banana fiber based sustainable biocomposites: A manufacturing perspective. Composites Part B: Engineering 180:107535. doi:10.1016/j.compositesb.2019.107535.
  • Komal, U. K., M. K. Lila, and I. Singh. 2021. Processing of PLA/pineapple fiber based next generation composites. Materials and Manufacturing Processes 36 (14):1677–92. doi:10.1080/10426914.2021.1942904.
  • Li, Z., X. Zhou, and C. Pei. 2011. Effect of sisal fiber surface treatment on properties of sisal fiber reinforced polylactide composites. International Journal of Polymer Science 2011:803428. doi:10.1155/2011/803428.
  • Lila, M. K., U. K. Komal, Y. Singh, and I. Singh. 2020. Extraction and characterization of munja fibers and its potential in the biocomposites. Journal of Natural Fibers 1–19. doi:10.1080/15440478.2020.1821287.
  • Lilli, M., M. Zvonek, V. Cech, C. Scheffler, J. Tirillò, and F. Sarasini. 2021. Low temperature plasma polymerization: An effective process to enhance the basalt fibre/matrix interfacial adhesion. Composites Communications 27:100769. doi:10.1016/j.coco.2021.100769.
  • Lopattananon, N., K. Panawarangkul, K. Sahakaro, and B. Ellis. 2006. Performance of pineapple leaf fiber-natural rubber composites: The effect of fiber surface treatments. Journal of Applied Polymer Science 102 (2):1974–84. doi:10.1002/app.24584.
  • Mukherjee, A., P. K. Ganguly, and D. Sur. 1993. Structural mechanics of jute: The effects of hemicellulose or lignin removal. The Journal of the Textile Institute 84 (3):348–53. doi:10.1080/00405009308658967.
  • Murariu, M., and P. Dubois. 2016. PLA composites: From production to properties. Advanced Drug Delivery Reviews 107:17–46. doi:10.1016/j.addr.2016.04.003.
  • Nadirah, W. O. W., M. Jawaid, A. A. A. Masri, H. P. S. A. Khalil, S. S. Suhaily, and A. R. Mohamed. 2012. Cell wall morphology, chemical and thermal analysis of cultivated pineapple leaf fibres for industrial applications. Journal of Polymers and the Environment 20 (2):404–11. doi:10.1007/s10924-011-0380-7.
  • Nopparut, A., and T. Amornsakchai. 2016. Influence of pineapple leaf fiber and it’s surface treatment on molecular orientation in, and mechanical properties of, injection molded nylon composites. Polymer Testing 52:141–49. doi:10.1016/j.polymertesting.2016.04.012.
  • Paul, S. A., K. Joseph, G. D. G. Mathew, L. A. Pothen, and S. Thomas. 2010. Influence of polarity parameters on the mechanical properties of composites from polypropylene fiber and short banana fiber. Composites. Part A, Applied Science and Manufacturing 41 (10):1380–87. doi:10.1016/j.compositesa.2010.04.015.
  • Pickering, K. L., M. G. A. Efendy, and T. M. Le. 2016. A review of recent developments in natural fibre composites and their mechanical performance. Composites. Part A, Applied Science and Manufacturing 83:98–112. doi:10.1016/j.compositesa.2015.08.038.
  • Poletto, M., H. L. O. Júnior, and A. J. Zattera. 2015. Thermal decomposition of natural fibers: Kinetics and degradation mechanisms. In Reactions and mechanisms in thermal analysis of advanced materials, ed. A. Tiwari and B. Raj, 515–45. Hoboken: John Wiley & Sons, Inc.
  • Rajesh, G., A. R. Prasad, and A. Gupta. 2015. Mechanical and degradation properties of successive alkali treated completely biodegradable sisal fiber reinforced poly lactic acid composites. Journal of Reinforced Plastics and Composites 34 (12):951–61. doi:10.1177/0731684415584784.
  • Ramlee, N. A., M. Jawaid, S. A. K. Yamani, E. S. Zainudin, and S. Alamery. 2021. Effect of surface treatment on mechanical, physical and morphological properties of oil palm/bagasse fiber reinforced phenolic hybrid composites for wall thermal insulation application. Construction and Building Materials 276:122239. doi:10.1016/j.conbuildmat.2020.122239.
  • Razak, N. I. A., N. A. Ibrahim, N. Zainuddin, M. Rayung, and W. Z. Saad. 2014. The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(lactic acid) composites. Molecules 19 (3):2957–68. doi:10.3390/molecules19032957.
  • Sanjay, M. R., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172:566–81. doi:10.1016/j.jclepro.2017.10.101.
  • Stark, N. M., and L. M. Matuana. 2004. Surface chemistry changes of weathered HDPE/wood-flour composites studied by xps and ftir spectroscopy. Polymer Degradation and Stability 86 (1):1–9. doi:10.1016/j.polymdegradstab.2003.11.002.
  • Vonk, C. G. 1973. Computerization of ruland’s x-ray method for determination of the crystallinity in polymers. Journal of Applied Crystallography 6 (2):148–52. doi:10.1107/S0021889873008332.
  • Wang, C., S. Bai, X. Yue, B. Long, and L. P. Choo-Smith. 2016. Relationship between chemical composition, crystallinity, orientation and tensile strength of kenaf fiber. Fibers and Polymers 17 (11):1757–64. doi:10.1007/s12221-016-6703-5.
  • Wu, Y., C. Xia, L. Cai, A. C. Garcia, and S. Q. Shi. 2018. Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound. Journal of Cleaner Production 184:92–100. doi:10.1016/j.jclepro.2018.02.257.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Ye, C., G. Ma, W. Fu, and H. Wu. 2015. Effect of fiber treatment on thermal properties and crystallization of sisal fiber reinforced polylactide composites. Journal of Reinforced Plastics and Composites 34 (9):718–30. doi:10.1177/0731684415579090.
  • Zhan, J., G. Wang, J. Li, Y. Guan, G. Zhao, H. Naceur, D. Coutellier, and J. Lin. 2021. Effect of the compatilizer and chemical treatments on the performance of poly(lactic acid)/ramie fiber composites. Composites Communications 27:100843. doi:10.1016/j.coco.2021.100843.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.