197
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Pineapple Fiber Hybrids Prepared by the Fusion of radiation-induced Graft Polymerization and Kabachnik-Fields three-component Reaction (RIGP-KF3CR)

, , , , , , & ORCID Icon show all
Pages 13550-13562 | Published online: 05 Aug 2022

References

  • Balito, L. P. 2010. The Philippine pineapple industry. Acta Horticulturae 902:53–62. doi:10.17660/ActaHortic.2011.902.2.
  • Bhardwaj, Y., M. Tamada, Y. C. Nho, M. Nasef, and O. Guven. 2014. Harmonized protocol for radiation-induced grafting, 21. Vienna: IAEA. 10.1.1.738.2273.
  • Buck, E. C. 2017. Electron microscopy characterization of suspended solids from hanford tank 241-AP-105 direct feed waste. United States. doi: 10.2172/1598866.
  • Chen, H. 2014. Chemical composition and structure of natural lignocellulose. Biotechnology of Lignocellulose 25–71. doi:10.1007/978-94-007-6898-7_2.
  • Dominik, L., S. Salzinger, B. S. Soller, and B. Rieger. 2015. Poly(Vinylphosphonate)s as macromolecular flame retardants for polycarbonate. Industrial & Engineering Chemistry Research 54 (6):1703–12. doi:10.1021/ie504084q.
  • Feng, X., Y. Jianming, T. Tesso, F. Dowell, and D. Wang. 2013. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Applied Energy 104:801–09. doi:10.1016/j.apenergy.2012.12.019.
  • Hamada, T., S. Yamashita, M. Omichi, K. Yoshimura, Y. Ueki, N. Seko, and R. Kakuchi. 2019. Multicomponent-reaction-ready biomass-sourced organic hybrids fabricated via the surface immobilization of polymers with lignin-based compounds. ACS Sustainable Chemistry & Engineering 7 (8):7795–803. doi:10.1021/acssuschemeng.8b06812.
  • Hatsuo, I., and D. P. Sanders. 2000. improved thermal and mechanical properties of polybenzoxazines based on alkyl-substituted aromatic amines. Journal of Polymer Science Part B: Polymer Physics 38 (24):3289–301. doi:10.1002/1099-0488(20001215)38:24<3289::AID-POLB110>3.0.CO;2-X.
  • Hebeish, A., and J. Thomas Guthrie. 1981. Radiation-induced grafting onto cellulosics. The Chemistry and Technology of Cellulosic Copolymers 4 64–145.
  • Hegazy, E.-S. A., H. A. AbdEl-Rehim, H. Kamal, and K. A. Kandeel. 2001. Advances in radiation grafting. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 185 (1–4):235–40. doi:10.1016/S0168-583X(01)00834-5.
  • Higa, O. Z., H. Antonio Mendonça Faria, and A. A. A. de Queiroz. 2014. Polyglycerol dendrimers immobilized on radiation grafted poly-HEMA hydrogels: Surface chemistry characterization and cell adhesion. Radiation Physics and Chemistry 98:118–23. doi:10.1016/j.radphyschem.2014.01.017.
  • Holmberg, A. L., N. A. Nguyen, M. G. Karavolias, K. H. Reno, R. P. Wool, and T. H. Epps III. 2016. Softwood lignin-based methacrylate polymers with tunable thermal and viscoelastic properties. Macromolecules 49 (4):1286–95. doi:10.1021/acs.macromol.5b02316.
  • Huang, J., F. Shiyu, and L. Gan. 2019. Structure and characteristics of Lignin, Editors, Huang, Jin, Shiyu, Fu, Gan, Lin. In Lignin chemistry and applications, Elsevier 25–50 ISBN:9780128139417 . doi:10.1016/B978-0-12-813941-7.00002-3.
  • Kakuchi, R., and P. Theato. 2014. Efficient multicomponent postpolymerization modification based on kabachnik-fields reaction. ACS Macro Letters 3 (4):329–32. doi:10.1021/mz500139c.
  • Kakuchi, R. 2014. Multicomponent Reactions in Polymer Synthesis. Angewandte Chemie - International Edition 53 (1):46–48. doi:10.1002/anie.201305538.
  • Kakuchi, R., S. Yoshida, T. Sasaki, S. Kanoh, and K. Maeda. 2018. Multi-component post-polymerization modification reactions of polymers featuring lignin-model compounds. Polymer Chemistry 9 (16):2109–15. doi:10.1039/C7PY01923H.
  • Kakuchi, R. 2019. The dawn of polymer chemistry based on multicomponent reactions. Polymer Journal 51 (10):945–53. doi:10.1038/s41428-019-0209-0.
  • Kakuchi, R., R. Tsuji, K. Fukasawa, S. Yamashita, M. Omichi, and N. Seko. 2021. Polymers of lignin-sourced components as a facile chemical integrant for the passerini three-component reaction. Polymer Journal 53 (4):523–31. doi:10.1038/s41428-020-00448-w.
  • Keglevich, G., N. Zsuzsa Kiss, D. K. Menyhárd, A. Fehérvári, and I. Csontos. 2012. A study on the kabachnik–fields reaction of benzaldehyde, cyclohexylamine, and dialkyl phosphites. Heteroatom Chemistry 23 (2):171–78. doi:10.1002/hc.20767.
  • Leão, A. L., B. M. Cherian, S. Narine, S. F. Souza, M. Sain, and S. Thomas. 2015. The use of pineapple leaf fibers (PALFs) as reinforcements in composites. Biofiber Reinforcements in Composite Materials 211–35. doi:10.1533/9781782421276.2.211.
  • Liu, Y., Y. Zhang, Z. Cao, M. Peng, and Z. Fang. 2013. Synthesis of novel poly(aminophosphonate ester)s flame retardants and their applications in EVA copolymer. Polymers for Advanced Technologies 24 (2):197–203. doi:10.1002/pat.3070.
  • Lora, J. H., and W. G. Glasser. 2002. Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment 10 (1–2):39–48. doi:10.1023/A:1021070006895.
  • Madrid, J. F., P. J. E. Cabalar, and L. V. Abad. 2018. Radiation-induced graft polymerization of acrylic acid and glycidyl methacrylate onto abaca/polyester nonwoven fabric. Journal of Natural Fibers 15 (5):625–38. doi:10.1080/15440478.2017.1349713.
  • Monteiro, S. N., F. Perissé Duarte Lopes, A. Paula Barbosa, A. Barreto Bevitori, I. Leão Amaral Da Silva, and L. Lopes Da Costa. 2011. Natural lignocellulosic fibers as engineering materials—An overview. Metallurgical and Materials Transactions A 42 (10):2963. doi:10.1007/s11661-011-0789-6.
  • Paone, E., T. Tabanelli, and F. Mauriello. 2020. The rise of lignin biorefinery. Current Opinion in Green and Sustainable Chemistry 24:1–6. doi:10.1016/j.cogsc.2019.11.004.
  • Pereira, P. H. F., H. Luiz Ornaghi, V. Arantes, and M. Odila Hilário Cioffi. 2021. Effect of chemical treatment of pineapple crown fiber in the production, chemical composition, crystalline structure, thermal stability and thermal degradation kinetic properties of cellulosic materials. Carbohydrate Research 499:108227. doi:10.1016/j.carres.2020.108227.
  • Pomicpic, J., G. Dancel, P. Cabalar, and J. Madrid. 2020. Methylene blue removal by poly(acrylic acid)-grafted pineapple leaf fiber/polyester nonwoven fabric adsorbent and its comparison with removal by gamma or electron beam irradiation. Radiation Physics and Chemistry 172:108737. doi:10.1016/j.radphyschem.2020.108737.
  • Reddy, B. S., M. Rajesh, E. Sudhakar, A. Rahaman, J. Kandasamy, and M. T. H. Sultan. 2020. Pineapple leaf fibres for automotive applications. Green Energy and Technology 279–96. doi:10.1007/978-981-15-1416-6_14.
  • Sanjay, M. R., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172:566–81. doi:10.1016/j.jclepro.2017.10.101.
  • Sanjay, M. R., S. Suchart, J. Parameswaranpillai, M. Jawaid, C. I. Pruncu, and A. Khan. 2019. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate Polymers 207:108–21. doi:10.1016/j.carbpol.2018.11.083.
  • Sohn, J.-Y., H.-J. Sung, J.-M. Song, J. Shin, and Y.-C. Nho. 2012. Radiation-Grafted proton exchange membranes based on co-grafting from binary monomer mixtures into poly(ethylene-co-tetrafluoroethylene) (ETFE) film. Radiation Physics and Chemistry 81 (8):923–26. doi:10.1016/j.radphyschem.2012.02.019.
  • Stanzione, J. F., J. M. Sadler, J. J. La Scala, and R. P. Wool. 2012. Lignin model compounds as bio-based reactive diluents for liquid molding resins. ChemSusChem 5 (7):1291–97. doi:10.1002/cssc.201100687.
  • Takács, E., L. Wojnárovits, J. Borsa, and I. Rácz. 2010. Hydrophilic/hydrophobic character of grafted cellulose. Radiation Physics and Chemistry 79 (4):467–70. doi:10.1016/j.radphyschem.2009.09.012.
  • Theato, P. 2015. Multi-component and sequential reactions in polymer synthesis, Vol. 269. Switzerland: Springer. doi:10.1007/978-3-319-20720-9.
  • Thilagavathi, G., N. Muthukumar, S. Neela Krishnanan, and T. Senthilram. 2019. Development and characterization of pineapple fibre nonwovens for thermal and sound insulation applications. Journal of Natural Fibers 17 (10):1391–400. doi:10.1080/15440478.2019.1569575.
  • Vinod, A., M. R. Sanjay, S. Suchart, and P. Jyotishkumar. 2020. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production 258:120978. doi:10.1016/j.jclepro.2020.120978.
  • Wang, Y., S. Liu, Q. Wang, J. Xingxiang, G. Yang, J. Chen, and P. Fatehi. 2021. Strong, ductile and biodegradable polylactic acid/lignin-containing cellulose nanofibril composites with improved thermal and barrier properties. Industrial Crops and Products 171:113898. doi:10.1016/j.indcrop.2021.113898.
  • Wellons, J. D., A. Schindler, and V. Stannett. 1964. Molecular weight distributions of the side chains of radiation initiated graft copolymers. Polymer 5:499–503. doi:10.1016/0032-3861(64)90198-3.
  • Wojnárovits, L., M. F. Cs, and E. Takács. 2010. Radiation-induced grafting of cellulose for adsorption of hazardous water pollutants: A review. Radiation Physics and Chemistry 79 (8):848–62. doi:10.1016/j.radphyschem.2010.02.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.