160
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Methyl-Sensitive Amplification Polymorphism (MSAP) Analysis Provides Insights into the DNA Methylation Underlying Heterosis in Kenaf (Hibiscus Cannabinus L.) Drought Tolerance

, , , , , , , , , , , , , & ORCID Icon show all
Pages 13665-13680 | Published online: 06 Aug 2022

References

  • An, X., G. R. Jin, X. H. Luo, C. L. Chen, W. L. E. Li, and G. L. Zhu. 2020. Transcriptome analysis and transcription factors responsive to drought stress in Hibiscus cannabinus. Peerj 8:e8470. ARTN e847010.7717/peerj.8470. doi:10.7717/peerj.8470.
  • Basu, S., V. Ramegowda, A. Kumar, and A. Pereira. 2016. Plant adaptation to drought stress. F1000Res 5:1554. doi:10.12688/f1000research.7678.1.
  • Berger, J., J. Palta, and V. Vadez. 2016b. Review: An integrated framework for crop adaptation to dry environments: Responses to transient and terminal drought. Plant Science 253:58–67. doi:10.1016/j.plantsci.2016.09.007.
  • Bewick, A. J., and R. J. Schmitz. 2017. Gene body DNA methylation in plants. Current Opinion in Plant Biology 36:103–10. doi:10.1016/j.pbi.2016.12.007.
  • Bouyer, D., A. Kramdi, M. Kassam, M. Heese, A. Schnittger, F. Roudier, and V. Colot. 2017. DNA methylation dynamics during early plant life. Genome Biology 18:ARTN 179. doi:10.1186/s13059-017-1313-0.
  • Chen, P., R. Li, and R. Zhou. 2018. Comparative phosphoproteomic analysis reveals differentially phosphorylated proteins regulate anther and pollen development in kenaf cytoplasmic male sterility line. Amino Acids 50 (7):841–62. doi:10.1007/s00726-018-2564-0.
  • Chen, P., T. Chen, Z. Q. Li, R. X. Jia, D. J. Luo, M. Q. Tang, H. Lu, Y. L. Hu, J. Yue, and Z. Huang. 2020. Transcriptome analysis revealed key genes and pathways related to cadmium-stress tolerance in Kenaf (Hibiscus cannabinus L.). Industrial Crops and Products 158:112970. ARTN 112970 doi:10.1016/j.indcrop.2020.112970.
  • DalCorso, G., F. Martini, E. Fasani, A. Manara, G. Visioli, and A. Furini. 2021. Enhancement of Zn tolerance and accumulation in plants mediated by the expression of Saccharomyces cerevisiae vacuolar transporter ZRC1. Planta 253 (6):ARTN 117. doi:10.1007/s00425-021-03634-z.
  • Gayacharan, and A. J. Joel. 2013. Epigenetic responses to drought stress in rice (Oryza sativa L.). Physiology and Molecular Biology of Plants 19 (3):379–87. doi:10.1007/s12298-013-0176-4.
  • He, X. C., Y. H. Xie, Y. C. Zhao, X. Y. Gao, L. L. Yu, Y. Ding, Q. Wu, Q. Wang, D. Jiang, X. L. Song, et al. 2018. Analysis of differentially methylated regions of genomic DNA in maize (Zea mays L.) exposed to sail stress. Caryologia 71 (4):331–40. doi:10.1080/00087114.2018.1469817.
  • Kashif, M. H., D. F. Tang, Z. Q. Li, F. Wei, Z. C. Liang, and P. Chen. 2020b. Comparative cytological and gene expression analysis reveals potential metabolic pathways and target genes responsive to salt stress in Kenaf (Hibiscus cannabinus L.). Journal of Plant Growth Regulation 39 (3):1245–60. doi:10.1007/s00344-019-10062-7.
  • Le, T. N., U. Schumann, N. A. Smith, S. Tiwari, P. C. K. Au, Q. H. Zhu, J. M. Taylor, K. Kazan, D. J. Llewellyn, R. Zhang, et al. 2014b. DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biology 15 (9):ARTN 458. doi:10.1186/s13059-014-0458-3.
  • Li, Z. Q., Y. L. Hu, M. M. Chang, M. H. Kashif, M. Q. Tang, D. J. Luo, S. Cao, H. Lu, W. X. Zhang, Z. Huang, et al. 2021. 5-Azacytidine pre-treatment alters dna methylation levels and induces genes responsive to salt stress in kenaf (Hibiscus cannabinus L.). Chemosphere 271:129562. doi:10.1016/j.chemosphere.2021.129562.
  • Liu, Y., M. Schiff, and S. P. Dinesh-Kumar. 2002b. Virus-induced gene silencing in tomato. The Plant Journal 31 (6):777–86. doi:10.1046/j.1365-313x.2002.01394.x.
  • Liu, Z. J., Y. K. Guo., and J. G. Bai. 2010. Exogenous Hydrogen Peroxide Changes Antioxidant Enzyme Activity and Protects Ultrastructure in Leaves of Two Cucumber Ecotypes Under Osmotic Stress. Journal Plant Growth Regulation 29 (2): 171–183 . doi:10.1007/s00344-009-9121-8.
  • Lu, Y., X. Cheng, M. Jia, X. Zhang, F. Xue, Y. Li, J. Sun, and F. Liu. 2021b. Silencing GhFAR3.1 reduces wax accumulation in cotton leaves and leads to increased susceptibility to drought stress. Plant Direct 5 (4):e00313. doi:10.1002/pld3.313.
  • Lukens, L. N., and S. H. Zhan. 2007. The plant genome’s methylation status and response to stress: Implications for plant improvement. Current Opinion in Plant Biology 10 (3):317–22. doi:10.1016/j.pbi.2007.04.012.
  • Mirouze, M., and J. Paszkowski. 2011. Epigenetic contribution to stress adaptation in plants. Current Opinion in Plant Biology 14 (3):267–74. doi:10.1016/j.pbi.2011.03.004.
  • Pennisi, E. 2008. Plant genetics: The blue revolution, drop by drop, gene by gene. Science 320 (5873):171–73. doi:10.1126/science.320.5873.171.
  • Porebski, S., L. G. Bailey, and B. R. Baum. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter 15 (1):8–15. doi:10.1007/Bf02772108.
  • Shan, Z. Y., X. L. Luo, M. G. Wei, T. W. Huang, A. Khan, and Y. M. Zhu. 2018. Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz). Scientific Reports 8: ARTN 17982. doi:10.1038/s41598-018-35711-x.
  • Tan, M. P. 2010. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiology and Biochemistry 48 (1):21–26. doi:10.1016/j.plaphy.2009.10.005.
  • Tang, X. M., X. Tao, Y. Wang, D. W. Ma, D. Li, H. Yang, and X. R. Ma. 2014. Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique. Molecular Genetics and Genomics 289 (6):1075–84. doi:10.1007/s00438-014-0869-6.
  • Tang, M. Q., Z. Q. Li, D. J. Luo, F. Wei, M. H. Kashif, H. Lu, Y. L. Hu, J. Yue, Z. Huang, W. Y. Tan, et al. 2021. A comprehensive integrated transcriptome and metabolome analyses to reveal key genes and essential metabolic pathways involved in CMS in kenaf. Plant Cell Reports 40 (1):223–36. doi:10.1007/s00299-020-02628-7.
  • Tang, M. Q., J. Yue, Z. Huang, Y. L. Hu, Z. Q. Li, D. J. Luo, S. Cao, H. Zhang, J. Pan, X. Wu, et al. 2022. Physiological and DNA methylation analysis provides epigenetic insights into chromium tolerance in kenaf. Environmental and Experimental Botany 194:104684. doi:10.1016/j.envexpbot.2021.104684.
  • Wang, H., Q. Feng, M. Zhang, C. Yang, W. Sha, and B. Liu. 2010. Alteration of DNA methylation level and pattern in sorghum (Sorghum bicolor L.) pure-lines and inter-line F1 hybrids following low-dose laser irradiation. Journal of Photochemistry and Photobiology B: Biology 99 (3):150–53. doi:10.1016/j.jphotobiol.2010.03.011.
  • Wang, H. F., G. Beyene, J. X. Zhai, S. H. Feng, N. Fahlgren, N. J. Taylor, R. Bart, J. C. Carrington, S. E. Jacobsen, and I. Ausin. 2015. CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proceedings of the National Academy of Sciences of the United States of America 112 (44):13729–34. doi:10.1073/pnas.1519067112.
  • Wang, Y. Q., K. X. Zhang, L. F. Sun, X. Han, S. J. Fan, X. Y. Li, Y. W. Qu, D. Yao, P. W. Wang, and J. Zhang. 2018. Study on the relationship between genetic variation of DNA methylation and heterosis in soybean leaves. Euphytica 214 (5):ARTN 85. doi:10.1007/s10681-018-2161-z.
  • Wei, F., D. F. Tang, Z. Q. Li, M. H. Kashif, A. Khan, H. Lu, R. Jia, and P. Chen. 2019. Molecular cloning and subcellular localization of six HDACs and their roles in response to salt and drought stress in kenaf (Hibiscus cannabinus L.). Biological Research 52 (1):1–11. doi:10.1186/s40659-019-0227-6.
  • Xin, C. H., R. K. Hou, F. Wu, Y. B. Zhao, H. H. Xiao, W. T. Si, M. E. Ali, L. Cai, and J. B. Guo. 2015. Analysis of cytosine methylation status in potato by methylation-sensitive amplified polymorphisms under low-temperature stress. Journal of Plant Biology 58 (6):383–90. doi:10.1007/s12374-015-0316-1.
  • Xiong, L. Z., C. G. Xu, M. A. S. Maroof, and Q. F. Zhang. 1999. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Molecular and General Genetics 261 (3):439–46. doi:10.1007/s004380050986.
  • Zeng, F. S., L. L. Li, N. S. Liang, X. Wang, X. Li, and Y. G. Zhan. 2015. Salt tolerance and alterations in cytosine methylation in the interspecific hybrids of Fraxinus velutina and Fraxinus mandshurica. Euphytica 205 (3):721–37. doi:10.1007/s10681-015-1432-1.
  • Zhang, H. M., and J. K. Zhu. 2011. RNA-directed DNA methylation. Current Opinion in Plant Biology 14 (2):142–47. doi:10.1016/j.pbi.2011.02.003.
  • Zhang, C. B., C. J. Lin, Z. R. Xu, Z. H. Chen, B. Peng, P. N. Wang, X. Y. Ding, and L. M. Zhao. 2018. DNA Methylation Differences in Soybean Hybrids and Their Parental Lines. Russian Journal of Plant Physiology 65 (3):357–63. doi:10.1134/S1021443718030160.
  • Zhang, L. W., Y. Xu, X. T. Zhang, X. K. Ma, L. L. Zhang, Z. Y. Liao, Q. Zhang, X. B. Wan, Y. Cheng, J. S. Zhang, et al. 2020. The genome of kenaf (Hibiscus cannabinus L.) provides insights into bast fiber and leaf shape biogenesis. Plant Biotechnology Journal 18 (8):1796–809. doi:10.1111/pbi.13341.
  • Zhao, Y., S. Yu, C. Xing, S. Fan, and M. Song. 2008. Analysis of DNA methylation in cotton hybrids and their parents. Molecular Biology 42 (2):169–78. doi:10.1134/S0026893308020015.
  • Zhu, N., S. Cheng, X. Liu, H. Du, M. Dai, D. X. Zhou, W. Yang, and Y. Zhao. 2015. The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Science 236:146–56. doi:10.1016/j.plantsci.2015.03.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.