141
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Fabrication of Conducting Polyaniline–Betel Nut Fiber Filaments with Potential Ammonia Gas Sensing Behavior

ORCID Icon, , &
Pages 13694-13710 | Published online: 09 Aug 2022

References

  • Ashokkumar, S. P., H. Vijeth, L. Yesappa, M. Niranjana, M. Vandana, and H. Devendrappa. 2020. Electrochemically synthesized polyaniline/copper oxide nano composites: To study optical band gap and electrochemical performance for energy storage devices. Inorganic Chemistry Communications 115:107865. doi:10.1016/j.inoche.2020.107865.
  • Bandagar, D. K., S. T. Navale, S. R. Nalage, R. S. Mane, F. J. Stadler, D. K. Aswal, S. K. Gupta, and V. B. Patil. 2016. Simple and low-temperature polyaniline-based flexible ammonia sensor: A step towards laboratory synthesis to economical model design. Journal of Material Chemistry C 135 (3):9461–68.
  • Bandagar, D. K., S. T. Navale, Y. H. Navale, S. M. Ingole, F. J. Stadler, N. Ramgir, D. K. Aswal, S. K. Gupta, R. S. Mane, and V. B. Patil. 2017. Flexible camphor sulfonic acid-doped PAni/α-Fe2O3 nanocomposite films and their room temperature ammonia sensing activity. Materials Chemistry and Physics 189:191–97. doi:10.1016/j.matchemphys.2016.12.050.
  • Chatterjee, K., P. Dhara, S. Ganguly, K. Kargupta, and D. Banerjee. 2013. Morphology dependent ammonia sensing with 5-sulfosalicylic acid doped nanostructured polyaniline synthesized by several routes. Sensors and Actuators. B, Chemical 181:544–50. doi:10.1016/j.snb.2013.02.042.
  • Dhawan, S. K., D. Kumar, M. K. Ram, S. Chandra, and D. C. Trivedi. 1997. Application of conducting polyaniline as sensor material for ammonia. Sensors and Actuators. B, Chemical 40 (2–3):99–103. doi:10.1016/S0925-4005(97)80247-X.
  • Dwivedi, G., G. Munjal, A. N. Bhaskarwar, and A. Chaudhary. 2022. Dye-sensitized solar cells with polyaniline: A review. Inorganic Chemistry Communications 135:109087. doi:10.1016/j.inoche.2021.109087.
  • Eising, M., C. E. Cava, R. V. Salvatierra, A. J. G. Zarbin, and L. S. Romana. 2016. Doping effect on self-assembled films of polyaniline and carbon nanotube applied as ammonia gas sensor. Sensors and Actuators B 254:25–33.
  • Fujii, S., M. Kodama, S. Matsuzawa, H. Hamasaki, A. Ohtaka, and Y. Nakamura. 2011. Conducting polymer-metal nanocomposite coating on fibers Hashim, Abbass ed. . In Advances in Nanocomposite Technology, 47–72. Sheffield, England, UK: Abbass Hashim.
  • Ganan, P., S. Garbizu, R. Llano-Ponte, and I. Mondragon. 2005. Surface modification of sisal fibers: Effects on the mechanical and thermal properties of their epoxy composites. Polymer Composites 26 (2):121–27. doi:10.1002/pc.20083.
  • Gautam, V., A. Srivastavab, K. P. Singhb, and V. L. Yadav. 2016. Vibrational and gravimetric analysis of polyaniline/polysaccharide composite materials. Polymer Science 58 (2):206–19.
  • Gemeay, A. H., R. G. E. El-Sharkawy, I. A. Mansour, and A. B. Zaki. 2007. Preparation and characterization of polyaniline/manganese dioxide composites and their catalytic activity. Journal of Colloid and Interface Science 308 (2):385–94. doi:10.1016/j.jcis.2006.12.077.
  • Godish, T. 1991. Air quality Godish, T ed. . In Volatile organic compounds in atmosphere 2nd , Vol. 109, Roy M England, UK:Harrison.
  • Gopakumar, A. D., A. R. Pai, Y. B. Pottathara, D. Pasquini, L. C. Morais, H. P. S. A. Khalil, A. Nzihou, Y. Grohens, and S. Thomas. 2021. Flexible papers derived from polypyrrole deposited cellulose nanofibers for enhanced electromagnetic interference shielding in gigahertz frequencies. Journal of Applied Polymer Science 138 (16):50262. doi:10.1002/app.50262.
  • Gopakumar, A. D., A. R. Pai, Y. B. Pottathara, D. Pasquini, L. C. Morais, M. Luke, N. Kalarikkal, Y. Grohens, and S. Thomas. 2018. Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorbers in the X- band. ACS Applied Materials & Interfaces 10 (23):20032–43. doi:10.1021/acsami.8b04549.
  • Hajlaoui, O., R. Khiari, L. Ajili, N. Batis, and L. Bergaoui. 2020. Design and characterization of type I cellulose‑polyaniline composites from various cellulose sources: A comparative study. Chemistry Africa 3:783–92. doi:10.1007/s42250-020-00148-1.
  • He, W., J. Tian, J. Li, H. Jin, and Y. Li. 2016. Characterization and properties of cellulose nanofiber/ polyaniline film composites synthesized through in situ polymerization. Bioresources 11 (4):8535–47. doi:10.15376/biores.11.4.8535-8547.
  • Karbownik, I., O. Rac-Rumijowska, T. Rybicki, P. Suchorska-Woźniak, and H. Teterycz. 2021. The effect of temperature on electric conductivity of polyacrylonitrile-polyaniline fibers. IEEE Access 9:74017–27. doi:10.1109/ACCESS.2021.3078835.
  • Li, S., P. Lin, L. Zhao, C. Wang, D. Liu, F. Liu, P. Sun, X. Liang, F. Liu, X. Yan, et al. 2018. The room temperature gas sensor based on polyaniline@ flower-like WO3 nanocomposites and flexible PET substrate for NH3 detection. Sensors and Actuators. B, Chemical 259:505–13. doi:10.1016/j.snb.2017.11.081.
  • Li, S., A. Liu, Z. Yang, L. Zhao, J. Wang, F. Liu, R. You, J. He, C. Wang, X. Yan, et al. 2019. Design and preparation of the WO3 hollow spheres@PANI conducting films for room temperature flexible NH3 sensing device. Sensors Actuators B Chemical 289:52–259. doi:10.1016/j.snb.2019.03.073.
  • Li, Y., Z. Xia, Q. Gong, X. Liu, Y. Yang, C. Chen, and C. Qian. 2020. Green synthesis of free standing cellulose/graphene oxide/polyaniline aerogel electrode for high-performance flexible all-solid-state supercapacitors. Nanomaterials 10 (8):1546. doi:10.3390/nano10081546.
  • Marins, A. J., B. G. Soares, K. Dahmouche, S. J. L. Ribeiro, H. Barud, and D. Bonemer. 2011. Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18:1285–94. doi:10.1007/s10570-011-9565-4.
  • Matveeva, E. S., I. Hernandez-Fuentes, V. Parkhutik, and R. Diaz-Calleja. 1996. Direct involvement of acid centers of polyaniline in charge transfer on organic acceptor. Synthetic Metals 87 (3):181–84. doi:10.1016/S0379-6779(97)80075-6.
  • Navale, S. T., M. A. Chougule, V. B. Patil, and A. T. Mane. 2014. Highly sensitive, reproducible, selective and stable CSA-polypyrrole NO2 sensor. Synthetic Metals 189:111–18. doi:10.1016/j.synthmet.2014.01.005.
  • Never, N. 1995. Air pollution control engineering. Singapore: McGraw-HILL.
  • Okubo, M., J. Izumi, and R. Takekoh. 1999. Production of micron-sized monodispersed core/shell composite polymer particles by seeded dispersion polymerization. Colloid and Polymer Science 277:875–80. doi:10.1007/s003960050464.
  • Pai, A. R., T. Binumol, A. D. Gopakumar, D. Pasquini, B. Seantier, N. Kalarikkal, and S. Thomas. 2020. Ultra-fast heat dissipating aerogels derived from polyaniline anchored cellulose nanofibers as sustainable microwave absorbers. Carbohydrate Polymers 246:116663. doi:10.1016/j.carbpol.2020.116663.
  • Pang, Z., E. Y. Melissa, A. P. Asquinelli, and Q. Wei. 2021. Ammonia sensing performance of polyaniline-coated polyamide 6 nanofibers. American Chemical Society 13 (6):8950–57.
  • Pang, Z., Q. Nie, J. Yang, F. Huang, Y. Xu, and Q. Wei. 2017. Ammonia sensing properties of different polyaniline-based composite nanofibres. Indian Journal of Fibre Textile Research 42:138–44.
  • Ragazzini, I., I. Gualandi, S. Selli, C. Polizzi, M. C. Cassani, D. Nanni, F. Gambassi, F. Tarterini, D. Tonelli, E. Scavetta, et al. 2021. A simple and industrially scalable method for making a PANI-modified cellulose touch sensor. Carbohydrate Polymers 254:117304. doi:10.1016/j.carbpol.2020.117304.
  • Razak, S. I. A., W. A. W. Abdul Rahman, S. Hashim, and M. Y. Yahaya. 2012. In situ surface modification of natural fiber by conducting polyaniline. Composite Interfaces 19 (6):365–76. doi:10.1080/15685543.2012.733178.
  • Razak, S. I. A., N. F. Ahmad Sharif, and N. H. M. Nayan. 2014. Electrically conductive paper of polyaniline modified pineapple leaf fibers. Fibers and Polymers 15:1107–11. doi:10.1007/s12221-014-1107-x.
  • Sharma, K., K. Pareek, R. Rohan, and P. Kumar. 2018. Flexible supercapacitor based on three-dimensional cellulose/graphite/polyaniline composite. International Journal of Energy Research 43 (1):604–11. doi:10.1002/er.4277.
  • Shoaie, N., M. Daneshpour, A. Mostafa, S. Mahshid, S. M. Khoshfetrat, F. Jahanpeyma, A. Gholaminejad, K. Omidfar, and M. Foruzandeh. 2019. Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: A review on recent advances. Microchimica Acta 465:186.
  • Tai, H., Y. Jiang, G. Xie, J. Yu, and X. Chen. 2007. Fabrication and gas sensitivity of polyaniline–titanium dioxide nanocomposite thin film. Sensors and Actuators. B, Chemical 125 (2):644–50. doi:10.1016/j.snb.2007.03.013.
  • Tanguy, N. R., K. K. Kazemi, J. Hong, K. C. Cheung, S. Mohammadi, P. Gnanasekar, S. S. Nair, M. H. Zarifi, and N. Yan. 2022. Flexible, robust, and high-performance gas sensors based on lignocellulosic nanofibrils. Carbohydrate Polymers 278:118920. doi:10.1016/j.carbpol.2021.118920.
  • Tao, J., R. Wang, H. Yu, L. Chen, D. Fang, Y. Tian, J. Xie, D. Jia, H. Liu, J. Wang, et al. 2020. Highly transparent, highly thermally stable nanocellulose/polymer hybrid substrates for flexible OLED devices. ACS Applied Materials & Interfaces 12 (8):9701–09. doi:10.1021/acsami.0c01048.
  • Teklu, T., L. M. Wangatia, and E. Alemayehu. 2017. Sisal fibers coated with conducting polyaniline: Property and structural studies. Polymer Science 59:624–29.
  • Vaghela, C., M. Kulkarni, S. Haram, M. Karve, and R. Aiyer. 2016. Biopolymer-polyaniline composite for a wide range ammonia gas sensor. IEEE Sensors Journal 11 (16):4318–25. doi:10.1109/JSEN.2016.2541178.
  • Wu, Z., X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, and B. Liu. 2013. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sensors and Actuators. B, Chemical 178:485–93. doi:10.1016/j.snb.2013.01.014.
  • Yang, L., L. Yang, S. Wu, F. Wei, Y. Hu, X. Xu, L. Zhang, and D. Sun. 2020. Three-dimensional conductive organic sulfonic acid co-doped bacterial cellulose/polyaniline nanocomposite films for detection of ammonia at room temperature. Sensors and Actuators. B, Chemical 323:128689. doi:10.1016/j.snb.2020.128689.
  • Yaqoob, A. A., M. N. M. Ibrahim, K. Umar, S. A. Bhawani, A. Khan, A. M. Asiri, M. R. Khan, M. Azam, and M. A. Ammari. 2021. Cellulose derived graphene/polyaniline nanocomposite anode for energy generation and bioremediation of toxic metals via benthic microbial fuel cells. Polymers 13 (1):135. doi:10.3390/polym13010135.
  • Zhang, K., X. Gu, Q. Dai, B. Yuan, Y. Yan, and M. Guo. 2019a. Flexible polyaniline-coated poplar fiber composite membranes with effective electromagnetic shielding performance. Vacuum 170:108990. doi:10.1016/j.vacuum.2019.108990.
  • Zhang, J., X. Liu, G. Neri, and N. Pinna. 2016. Nanostructured materials for room-temperature gas sensors. Advanced Materials 28:795–831. doi:10.1002/adma.201503825.
  • Zhang, Y., M. Qiu, Y. Yu, B. Wen, and L. Cheng. 2017. A novel polyaniline-coated bagasse fiber composite with core-shell hetero-structure provides effective electromagnetic shielding performance. ACS Applied Materials & Interfaces 9 (1):809–18. doi:10.1021/acsami.6b11989.
  • Zhang, S., X. Song, S. Liu, F. Sun, G. Liu, and Z. Tan. 2019b. Template-assisted synthesized MoS2/polyaniline hollow microsphere electrode for high performance MoS2 supercapacitors. Electrochimi Acta 312:1–10. doi:10.1016/j.electacta.2019.04.177.
  • Zhang, W., X. Zhang, Z. Wu, K. Abdurahman, Y. Cao, H. Duan, and D. Jia. 2020. Mechanical, electromagnetic shielding and gas sensing properties of flexible cotton fiber/polyaniline composites. Composites Science Technology 188:107966. doi:10.1016/j.compscitech.2019.107966.
  • Zhu, C., U. Cakmak, O. Sheikhnejad, X. Cheng, X. Zhang, Y. Xu, S. Gao, H. Zhao, and Z. Major. 2019. One step synthesis of PANI/Fe2O3 nanocomposites and flexible film for enhanced NH3 sensing performance at room temperature. Nanotechnology 30:255502. doi:10.1088/1361-6528/ab076e.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.