115
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pyrolysis Decomposition Kinetics of Microcrystalline Cellulose and Curaua Fiber: Insight of Reaction Models by Using Vyazovkin Method

, ORCID Icon, &
Pages 13711-13724 | Published online: 30 Jul 2022

References

  • Ali, I., H. Bahaitham, and R. Naebulharam. 2017. A comprehensive kinetics study of coconut shell waste pyrolysis bioresource technology A comprehensive kinetics study of coconut shell waste pyrolysis. Bioresource Technology 235:1–11. doi:10.1016/j.biortech.2017.03.089.
  • Cabeza, A., F. Sobrón, F. M. Yedro, and J. García-Serna. 2015. Autocatalytic kinetic model for thermogravimetric analysis and composition estimation of biomass and polymeric fractions. Fuel 148:212–25. doi:10.1016/j.fuel.2015.01.048.
  • Calvini, P., A. Gorassini, and A. L. Merlani. 2008. On the kinetics of cellulose degradation: Looking beyond the pseudo zero order rate equation. Cellulose 15 (2):193–203. doi:10.1007/s10570-007-9162-8.
  • Castro, J. D. S., E. G. P. da Silva, and C. F. Virgens. 2020. Evaluation of models to predict the influence of chemical pretreatment on the peels of Nephelium lappaceum L. based on pyrolysis kinetic parameters obtained using a combined Fraser-Suzuki function and Friedman’s isoconversional method. Journal of Analytical and Applied Pyrolysis 149:104827. doi:10.1016/j.jaap.2020.104827.
  • Chokshi, S., V. Parmar, P. Gohil, and V. Chaudhary. 2020. Chemical composition and mechanical properties of natural fibers. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2020.1848738.
  • Drozin, D., S. Sozykin, N. Ivanova, T. Olenchikova, T. Krupnova, N. Krupina, and V. Avdin. 2020. Kinetic calculation: Software tool for determining the kinetic parameters of the thermal decomposition process using the Vyazovkin method. SoftwareX 11:100359. doi:10.1016/j.softx.2019.100359.
  • Emsley, A., R. Heywood, M. Ali, and C. Eley. 1997. On the kinetics of degradation of cellulose. Cellulose 4 (1):1–5. doi:10.1023/A:1018408515574.
  • Erceg, M., and I. Kres. 2017. Different approaches to the kinetic analysis of thermal degradation of poly (ethylene oxide). Cellulose 131:325–34. doi:10.1007/s10973-017-6349-6.
  • Flynn, J. H., and L. A. Wall. 1966. A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science. Part B: Polymer Letters 4 (5):323–28. doi:10.1002/pol.1966.110040504.
  • Galwey, A. K. 2015. Solid state reaction kinetics, mechanisms and catalysis: A retrospective rational review. Reaction Kinetics, Mechanisms and Catalysis 114 (1):1–29. doi:10.1007/s11144-014-0770-7.
  • Hosoya, T., H. Kawamoto, and S. Saka. 2007. Cellulose-hemicellulose and cellulose-lignin interactions in wood pyrolysis at gasification temperature. Journal of Analytical and Applied Pyrolysis 80 (1):118–25. doi:10.1016/j.jaap.2007.01.006.
  • Huda, M. S., L. T. Drzal, D. Ray, A. K. Mohanty, and M. Mishra. 2008. Natural-fiber composites in the automotive sector. Properties and Performance of Natural-Fibre Composites 221–68. doi:10.1533/9781845694593.2.221.
  • Khawam, A., and D. R. Flanagan. 2006. Solid-state kinetic models : Basics and mathematical fundamentals. Journal of Physical Chemistry B 110 (35):17315–28. doi:10.1021/jp062746a.
  • Khazraji, A. C., and S. Robert. 2013. Interaction effects between cellulose and water in nanocrystalline and amorphous regions:A novel approach using molecular modeling. Journal of Nanomaterials. doi:10.1155/2013/409676.
  • L’vov, B. V. 2014. Activation effect in heterogeneous decomposition reactions: Fact or fiction? Reaction Kinetics, Mechanisms and Catalysis 111 (2):415–29. doi:10.1007/s11144-014-0675-5.
  • L’vov, B. V. 2015. On the way from the activation model of solid decomposition to the thermochemical model. Reaction Kinetics, Mechanisms and Catalysis 116 (1):1–18. doi:10.1007/s11144-015-0886-4.
  • Long, Q., Y. Xia, S. Liao, Y. Li, W. Wu, and Y. Huang. 2014. Facile synthesis of hydrotalcite and its thermal decomposition kinetics mechanism study with masterplots method. Thermochimica Acta 579:50–55. doi:10.1016/j.tca.2014.01.016.
  • Moukhina, E. 2012. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. Journal of Thermal Analysis and Calorimetry 109 (3):1203–14. doi:10.1007/s10973-012-2406-3.
  • Neves, R. M., K. S. Lopes, M. G. V. Zimmermann, M. Poletto, and A. J. Zattera. 2019. Cellulose Nanowhiskers extracted from tempo-oxidized curaua fibers. Journal of Natural Fibers. doi:10.1080/15440478.2019.1568346.
  • Neves, R. M., H. L. Ornaghi, A. J. Zattera, and S. C. Amico. 2020b. The influence of silane surface modification on microcrystalline cellulose characteristics. Carbohydrate Polymers 230:115595. doi:10.1016/j.carbpol.2019.115595.
  • Neves, R. M., H. L. J. Ornaghi, F. G. Ornaghi, S. C. Amico, and A. J. Zattera. 2020a. Degradation kinetics and lifetime prediction for polystyrene/nanocellulose nanocomposites. Journal of Thermal Analysis and Calorimetry 0123456789. doi:10.1007/s10973-020-10316-7.
  • Orfão, J., F. Antunes, and J. Figuereido. 1999. Pyrolysis kinetics of lignocellulosic materials: Three independent reactions model. Fuel 78 (3):349–58. doi:10.1016/S0016-2361(98)00156-2.
  • Ornaghi, H. L., F. G. Ornaghi, K. C. C. C. Benini, and O. Bianchi. 2019. A comprehensive kinetic simulation of different types of plant fibers : Autocatalytic degradation mechanism. Cellulose 26 (12):7145–57. doi:10.1007/s10570-019-02610-x.
  • Ornaghi, H. L., F. G. Ornaghi, R. M. Neves, F. M. Monticeli, and O. Bianchi. 2020. Mechanisms involved in thermal degradation of lignocellulosic fibers: A survey based on chemical composition. Cellulose 27 (9):4949–61. doi:10.1007/s10570-020-03132-7.
  • Ourique, P. A., F. G. Ornaghi, H. L. J. Ornaghi, C. H. Wanke, and O. Bianchi. 2019. Thermo-oxidative degradation kinetics of renewable hybrid polyurethane – Urea obtained from air-oxidized soybean oil. Journal of Thermal Analysis and Calorimetry 137 (6):1969–79. doi:10.1007/s10973-019-08089-9.
  • Ozawa, T. 1965. A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan 38 (11):1881–86. doi:10.1246/bcsj.38.1881.
  • Saddawi, A., J. M. Jones, A. Williams, and M. A. Wójtowicz. 2010. Kinetics of the thermal decomposition of biomass. Energy &Fuels 37 (9):1274–82. doi:10.1021/ef900933k.
  • Sanchez-Jimenez, P. E., L. A. Pérez-Maqueda, A. Perejón, J. Cosp-Pascual, M. Benítez-Guerrero, and J. M. Criado. 2011. An improved model for the kinetic description of the thermal degradation of cellulose. Cellulose 18 (6):1487–98. doi:10.1007/s10570-011-9602-3.
  • Santamarı, R., M. Granda, M. Granda, and M. Granda. 2005. ’Thermal degradation of lignocellulosic materials treated with several acids. Journal of Analytical and Applied Pyrolisis 74 (1–2):337–43. doi:10.1016/j.jaap.2004.11.030.
  • Shebani, A. N., A. J. van Reenen, and M. Meincken. 2008. The effect of wood extractives on the thermal stability of different wood species. Thermochimica Acta 471 (1–2):43–50. doi:10.1016/j.tca.2008.02.020.
  • Silva, R., and E. M. F. Aquino. 2008. Curaua fiber: A new alternative to polymeric composites. Journal of Reinforced Plastics and Composites 27 (1):103–12. doi:10.1177/0731684407079496.
  • Souza, C. P. F., E. H. de Souza, C. A. S. Ledo, and F. V. D. Souza. 2018. Evaluation of the micropropagation potential of curauá Pineapple hybrids for fiber production. Acta Amazonica 48 (4):290–97. doi:10.1590/1809-4392201800382.
  • Souza Jr, F. G., G. E. Oliveira, C. H. M. Rodrigues, B. G. Soares, M. Nele, and J. C. Pinto. 2009. Natural Brazilian amazonic (curaua) fibers modified with polyaniline nanoparticles. Macromolecular Materials and Engineering 294 (8):484–91. doi:10.1002/mame.200900033.
  • Sunphorka, S., B. Chalermsinsuwan, and P. Piumsomboon. 2017. Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents. Fuel 193:142–58. doi:10.1016/j.fuel.2016.12.046.
  • Testa, G., A. Surdella, E. Rossi, C. Bozii, and A. Seves. 1994. The kinetics of cellulose fiber degradation and correlation with some tensile properties. Cellulose 49:47–49. doi:10.1002/actp.1994.010450109.
  • Vyazovkin, S. 1997. Advanced isoconversional method. Journal of Thermal Analysis 49 (3):1493–99. doi:10.1007/BF01983708.
  • Vyazovkin, S. 2020. How much is the accuracy of activation energy affected by ignoring thermal inertia? International Journal of Chemical Kinetics 52 (1):23–28. doi:10.1002/kin.21326.
  • Vyazovkin, S., A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, N. Sbirrazzuoli, and J. J. Suñol. 2011. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochimica Acta 590 (1):1–23. doi:10.1016/j.tca.2014.05.036.
  • Vyazovkin, S., A. K. Burnham, L. Favergeon, N. Koga, E. Moukhina, L. A. Pérez-Maqueda, and N. Sbirrazzuoli. 2020. ICTAC kinetics committee recommendations for analysis of multi-step kinetics. ThermochimicaActa 689:178597. doi:10.1016/j.tca.2020.178597.
  • Yao, Y., and S. Chen. 2012. The effects of fiber’s surface roughness on the mechanical properties of fiber-reinforced polymer composites. Journal of Composite Materials 47:12–14. doi:10.1177/0021998312459871.
  • Zah, R., R. Hischier, A. L. Leão, and I. Braun. 2007. Curauá fibers in the automobile industry - a sustainability assessment. Journal of Cleaner Production 15 (11):1032–40. doi:10.1016/j.jclepro.2006.05.036.
  • Zhang, J., Y. S. Choi, C. G. Yoo, T. H. Kim, R. C. Brown, and B. H. Shanks. 2015. Cellulose − hemicellulose and cellulose − lignin interactions during fast pyrolysis. ACS Sustainable Chemical Engineering 3 (2):293–301. doi:10.1021/sc500664h.
  • Zhao, C., E. Jiang, and A. Chen. 2017. Volatile production from pyrolysis of cellulose, hemicellulose and lignin. Journal of the Energy Institute 90 (6):902–13. doi:10.1016/j.joei.2016.08.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.