179
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Investigation of a New Natural Cellulosic Fiber Extracted from Beetroot Plant

ORCID Icon & ORCID Icon
Pages 13852-13863 | Published online: 19 Aug 2022

References

  • Balaji, A. N., and K. J. Nagarajan. 2017. Characterization of Alkali treated and untreated new cellulosic fiber from saharan aloe vera cactus leaves. Carbohydrate Polymers 174:200–08. doi:10.1016/j.carbpol.2017.06.065.
  • Baskaran, P. G., M. Kathiresan, P. Senthamaraikannan, and S. S. Saravanakumar. 2018. Characterization of new natural cellulosic fiber from the bark of dichrostachys cinerea. Journal of Natural Fibers 15 (1):62–68. doi:10.1080/15440478.2017.1304314.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015. Characterization of new natural cellulosic fiber from lygeum spartum L. Carbohydrate Polymers 134:429–37. doi:10.1016/j.carbpol.2015.08.024.
  • Chhikara, N., K. Kushwaha, P. Sharma, Y. Gat, and A. Panghal. 2019. Bioactive compounds of beetroot and utilization in food processing industry: A critical review. Food Chemistry 272:192–200. doi:10.1016/j.foodchem.2018.08.022.
  • Ciolacu, D., F. Ciolacu, and V. I. Popa. 2011. Amorphous cellulose—structure and characterization. Cellulose Chemistry and Technology 45 (1):13.
  • Dalmis, R., G. B. Kilic, Y. Seki, S. Koktas, and O. Y. Keskin. 2020. Characterization of a novel natural cellulosic fiber extracted from the stem of chrysanthemum morifolium.”. Cellulose 27 (15):8621–34. doi:10.1007/s10570-020-03385-2.
  • Eyupoglu, S. 2020. Characterization of new cellulosic fibers obtained from zingiber officinale. Journal of Natural Fibers 1–10. doi:10.1080/15440478.2020.1764452.
  • Eyupoglu, S., and N. Merdan. 2021a. Physicochemical properties of new plant based fiber from lavender stem. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2021.1982816.
  • Eyupoglu, S., and N. Merdan. 2021b. Investigation of the characteristic and sound absorption properties of a new cellulose-based fiber from alcea rose l. plant. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2021.1993481.
  • Ganapathy, T., R. Sathiskumar, P. Senthamaraikannan, S. S. Saravanakumar, and A. Khan. 2019. Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. International Journal of Biological Macromolecules 138:573–81. doi:10.1016/j.ijbiomac.2018.12.056.
  • Gopinath, R., K. Ganesan, S. S. Saravanakumar, and R. Poopathi. 2016. Characterization of new cellulosic fiber from the stem of sida rhombifolia. International Journal of Polymer Analysis and Characterization 21 (2):123–29. doi:10.1080/1023666X.2016.1117712.
  • Hyness, N. R. J., N. J. Vignesh, P. Senthamaraikannan, S. S. Saravanakumar, and M. R. Sanjay. 2018. Characterization of new natural cellulosic fiber from heteropogon contortus plant. Journal of Natural Fibers 15 (1):146–53. doi:10.1080/15440478.2017.1321516.
  • Indran, S., R. E. Raj, and V. S. Sreenivasan. 2014. Characterization of new natural cellulosic fiber from cissus quadrangularis root. Carbohydrate Polymers 110:423–29. doi:10.1016/j.carbpol.2014.04.051.
  • Kumar, R., S. Sivaganesan, P. Senthamaraikannan, S. S. Saravanakumar, A. Khan, S. Ajith Arul Daniel, and L. Loganathan. 2020. Characterization of new cellulosic fiber from the bark of acacia nilotica l. plant. Journal of Natural Fibers 1–10. doi:10.1080/15440478.2020.1738305.
  • Ling, Z., T. Wang, M. Makarem, M. S. Cintrón, H. N. Cheng, X. Kang, M. Bacher, A. Potthast, T. Rosenau, H. King, et al. 2019. Effects of ball milling on the structure of cotton cellulose. Cellulose. 26(1):305–28. doi:10.1007/s10570-018-02230-x.
  • Maache, M., A. Bezazi, S. Amroune, F. Scarpa, and A. Dufresne. 2017. Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydrate Polymers 171:163–72. doi:10.1016/j.carbpol.2017.04.096.
  • Maheshwaran, M. V., N. R. J. Hyness, P. Senthamaraikannan, S. S. Saravanakumar, and M. R. Sanjay. 2018. Characterization of natural cellulosic fiber from epipremnum aureum stem. Journal of Natural Fibers 15 (6):789–98. doi:10.1080/15440478.2017.1364205.
  • Manimaran, P., S. P. Saravanan, M. R. Sanjay, S. Siengchin, M. Jawaid, and A. Khan. 2019. Characterization of new cellulosic fiber: dracaena reflexa as a reinforcement for polymer composite structures. Journal of Materials Research and Technology 8 (2):1952–63. doi:10.1016/j.jmrt.2018.12.015.
  • Manimaran, P., P. Senthamaraikannan, M. R. Sanjay, M. K. Marichelvam, and M. Jawaid. 2018. Study on characterization of furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydrate Polymers 181:650–58. doi:10.1016/j.carbpol.2017.11.099.
  • Moshi, A. A. M., D. Ravindran, S. S. Bharathi, S. Indran, S. S. Saravanakumar, and Y. Liu. 2020. Characterization of a new cellulosic natural fiber extracted from the root of ficus religiosa tree. International Journal of Biological Macromolecules 142:212–21. doi:10.1016/j.ijbiomac.2019.09.094.
  • Mwaikambo, L. Y., and M. P. Ansell. 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science 84 (12):2222–34. doi:10.1002/app.10460.
  • Narayanasamy, P., P. Balasundar, S. Senthil, M. R. Sanjay, S. Siengchin, A. Khan, and A. M. Asiri. 2020. Characterization of a novel natural cellulosic fiber from calotropis gigantea fruit bunch for ecofriendly polymer composites. International Journal of Biological Macromolecules 150:793–801. doi:10.1016/j.ijbiomac.2020.02.134.
  • Pandiarajan, P., M. Kathiresan, P. G. Baskaran, and J. Kanth. 2020. Characterization of raw and alkali treated new cellulosic fiber from the rinds of thespesia populnea plant. Journal of Natural Fibers 1–12. doi:10.1080/15440478.2020.1852996.
  • Sanjay, M. R., S. Siengchin, J. Parameswaranpillai, M. Jawaid, C. I. Pruncu, and A. Khan. 2019. A comprehensive review of techniques for natural fibers as reinforcement in composites: preparation, processing and characterization. Carbohydrate Polymers 207:108–21. doi:10.1016/j.carbpol.2018.11.083.
  • Senthamaraikannan, P., and M. Kathiresan. 2018. Characterization of raw and alkali treated new natural cellulosic fiber from coccinia grandis. L. Carbohydrate Polymers 186:332–43. doi:10.1016/j.carbpol.2018.01.072.
  • Siva, R., T. N. Valarmathi, K. Palanikumar, and A. V. Samrot. 2020. Study on a novel natural cellulosic fiber from kigelia africana fruit: characterization and analysis. Carbohydrate Polymers 244:116494. doi:10.1016/j.carbpol.2020.116494.
  • Terzopoulou, Z. N., G. Z. Papageorgiou, E. Papadopoulou, E. Athanassiadou, E. Alexopoulou, and D. N. Bikiaris. 2015. Green composites prepared from aliphatic polyesters and bast fibers. Industrial Crops and Products 68:60–79. doi:10.1016/j.indcrop.2014.08.034.
  • Thakur, V. K., and M. K. Thakur. 2014. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers 109:102–17. doi:10.1016/j.carbpol.2014.03.039.
  • Vijay, R., D. L. Singaravelu, A. Vinod, M. R. Sanjay, S. Siengchin, M. Jawaid, A. Khan, and J. Parameswaranpillai. 2019. Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. International Journal of Biological Macromolecules 125:99–108. doi:10.1016/j.ijbiomac.2018.12.056.
  • Zhu, C., R. M. Richardson, K. D. Potter, A. F. Koutsomitopoulou, J. S. van Duijneveldt, S. R. Vincent, N. D. Wanasekara, S. J. Eichhorn, and S. S. Rahatekar. 2016. High modulus regenerated cellulose fibers spun from a low molecular weight microcrystalline cellulose solution. Acs Sustainable Chemistry & Engineering 4 (9):4545–53. doi:10.1021/acssuschemeng.6b00555.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.