212
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of Titanium Dioxide Nanoparticle on Properties of Nanocomposite Membrane Made of Bacterial Cellulose

, , , , & ORCID Icon
Pages 13914-13927 | Published online: 01 Sep 2022

References

  • Adel, A. M. 2016. Incorporation of nano-metal particles with paper matrices. Interdisciplinary Journal of Chemistry 1 (2):36–46. doi:10.15761/ijc.1000107.
  • Ahmadizadegan, H. 2017. Surface modification of TiO2 nanoparticles with biodegradable nanocellolose and synthesis of novel polyimide/cellulose/TiO2 membrane. Journal of Colloid and Interface Science 491:390–400. doi:10.1016/j.jcis.2016.11.043.
  • Almeida, I. F., T. Pereira, N. H. C. S. Silva, F. P. Gomes, A. J. D. Silvestre, C. S. R. Freire, J. M. Sousa Lobo, and P. C. Costa. 2014. Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. European Journal of Pharmaceutics and Biopharmaceutics 86 (3):332–36. doi:10.1016/j.ejpb.2013.08.008.
  • Ana, A. C., M. dos Santos, L. M. S. Brandão, I. T. F. de Resende, I. M. Leo, E. S. Morillo, R. M. N. Yerga, J. L. G. Fierro, S. M. Silvia, and R. Figueiredo. 2017. the effect of cellulose loading on the photoactivity of Cellulose-TiO2 hybrids for hydrogen production under simulated sunlight. International Journal of Hydrogen Energy 42 (48):28747–54. doi:10.1016/j.ijhydene.2017.09.022.
  • Anwar, B., B. Bundjali, and I. M. Arcana. 2015. Isolation of cellulose nanocrystals from bacterial cellulose produced from pineapple peel waste juice as culture medium. Procedia Chemistry 16:279–84. doi:10.1016/j.proche.2015.12.051.
  • Arularasu, M. V., M. Harb, and R. Sundaram. 2020. Synthesis and characterization of Cellulose/TiO2 nanocomposite: Evaluation of in vitro antibacterial and in silico molecular docking studies. Carbohydrate Polymers 249:116868. doi:10.1016/j.carbpol.2020.116868.
  • BPS. 2021. Production of Fruits 2020. Available in Statistics Indonesia. Accessed November 12. https://www.bps.go.id/indicator/55/62/2/produksi-tanaman-buah-buahan.html
  • Brandes, R., L. De Souza, V. Vargas, E. Oliveira, A. Mikowski, C. Carminatti, H. Al-Qureshi, and D. Recouvreux. 2016. Preparation and characterization of bacterial Cellulose/TiO2 hydrogel nanocomposite. Journal of Nano Research 43:73–80. doi:10.4028/JNanoR.43.73https://www.scientific.net/.
  • Brandes, R., E. C. A. Trindade, D. F. Vanin, V. M. M. Vargas, C. A. Carminatti, H. A. Al-Qureshi, and D. O. S. Recouvreux. 2018. Spherical bacterial Cellulose/TiO2 nanocomposite with potential application in contaminants removal from wastewater by photocatalysis. Fibers and Polymers 19 (9):1861–68. doi:10.1007/s12221-018-7798-7.
  • Costa, A. F. S., F. C. G. Almeida, G. M. Vinhas, and L. A. Sarubbo. 2017. Production of bacterial cellulose by gluconacetobacter Hansenii using corn steep liquor as nutrient sources. Frontiers in Microbiology 8:2027. doi:10.3389/fmicb.2017.02027.
  • Dubey, R. S., and S. Singh. 2017. Investigation of structural and optical properties of pure and chromium doped TiO2 nanoparticles prepared by solvothermal method. Results in Physics 7:1283–88. doi:10.1016/j.rinp.2017.03.014.
  • Elsacker, E., S. Vandelook, B. Damsin, A. Van Wylick, E. Peeters, and L. De Laet. 2021. Mechanical characteristics of bacterial cellulose-reinforced mycelium composite materials. Fungal Biology and Biotechnology 8 (1):1–14. doi:10.1186/s40694-021-00125-4.
  • French, A. D. 2014. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21 (2):885–96. doi:10.1007/s10570-013-0030-4.
  • Hishikawa, Y., E. Togawa, and T. Kondo. 2017. Characterization of individual hydrogen bonds in crystalline regenerated cellulose using resolved polarized FTIR spectra. ACS Omega 2 (4):1469–76. doi:10.1021/acsomega.6b00364.
  • Huang, J., X. Ma, A. Dufresne, and Y. Guang. 2019. Nanocellulose: From fundamentals to advanced materials. In Nanocellulose: From fundamentals to advanced materials, ed. J. Huang, A. Dufresne, and N. Lin, 1–486. Weinheim, Germany: Wiley-VCH. doi:10.1002/9783527807437.
  • Huang, Q., C. Zhao, and W. Yang. 2021. Bacterial cellulose nanofiber membrane for use as lithium-ion battery separator. IOP Conference Series: Earth and Environmental Science 647 (1):012069. IOP Publishing Ltd. doi:10.1088/1755-1315/647/1/012069.
  • Jagannath, A., A. Kalaiselvan, S. S. Manjunatha, P. S. Raju, and A. S. Bawa. 2008. The effect of PH, sucrose and ammonium sulphate concentrations on the production of bacterial cellulose (Nata-de-Coco) by Acetobacter xylinum. World Journal of Microbiology & Biotechnology 24 (11):2593–99. doi:10.1007/s11274-008-9781-8.
  • Kale, B. M., J. Wiener, J. Militky, S. Rwawiire, R. Mishra, K. I. Jacob, and Y. Wang. 2016. Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness. Carbohydrate Polymers 150:107–13. doi:10.1016/j.carbpol.2016.05.006.
  • Kameya, Y., and H. Yabe. 2019. Optical and superhydrophilic characteristics of TiO2 coating with subwavelength surface structure consisting of spherical nanoparticle aggregates. Coatings 9 (9):547. doi:10.3390/coatings9090547.
  • Khalid, A., H. Ullah, M. Ul-Islam, R. Khan, S. Khan, F. Ahmad, T. Khan, and F. Wahid. 2017. Bacterial cellulose-TiO2 nanocomposites promote healing and tissue regeneration in burn mice model. RSC Advances 7 (75):47662–68. doi:10.1039/c7ra06699f.
  • Khan, S., M. Ul-Islam, W. A. Khattak, M. W. Ullah, and J. K. Park. 2015. Bacterial cellulose-titanium dioxide nanocomposites: Nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22 (1):565–79. doi:10.1007/s10570-014-0528-4.
  • Kusior, A., J. Banas, A. Trenczek-Zajac, P. Zubrzycka, A. Micek-Ilnicka, and M. Radecka. 2018. Structural properties of TiO2 nanomaterials. Journal of Molecular Structure 1157:327–36. doi:10.1016/j.molstruc.2017.12.064.
  • Li, X., H. Li, T. You, X. Chen, S. Ramaswamy, Y. Y. Wu, and F. Xu. 2019. Enhanced dissolution of cotton cellulose in 1-Allyl-3-Methylimidazolium chloride by the addition of metal chlorides. ACS Sustainable Chemistry & Engineering 7 (23):19176–84. doi:10.1021/acssuschemeng.9b05159.
  • Li, G., L. Lv, H. Fan, J. Ma, Y. Li, Y. Wan, and X. S. Zhao. 2010. Effect of the agglomeration of TiO2 nanoparticles on their photocatalytic performance in the aqueous phase. Journal of Colloid and Interface Science 348 (2):342–47. doi:10.1016/j.jcis.2010.04.045.
  • Marsh, D. H., D. J. Riley, D. York, and A. Graydon. 2009. Sorption of inorganic nanoparticles in woven cellulose fabrics. Particuology 7 (2):121–28. doi:10.1016/j.partic.2009.01.004.
  • Mohamed, M. A., W. W. N. Salleh, J. Jaafar, A. F. Ismail, M. Abd Mutalib, N. A. A. Sani, S. E. A. Asri, and C. S. Ong. 2016. Physicochemical characteristic of regenerated Cellulose/N-Doped TiO2 nanocomposite membrane fabricated from recycled newspaper with photocatalytic activity under UV and visible light irradiation. Chemical Engineering Journal 284:202–15. doi:10.1016/j.cej.2015.08.128.
  • Naomi, R., R. Bt Hj Idrus, and B. F. Mh. 2020. Plant-vs. bacterial-derived cellulose for wound healing: A review. International Journal of Environmental Research and Public Health 17 (18):1–25. doi:10.3390/ijerph17186803.
  • Nia, M. H., M. Rezaei-Tavirani, A. R. Nikoofar, H. Masoumi, R. Nasr, H. Hasanzadeh, M. Jadidi, and M. Shadnush. 2015. Stabilizing and dispersing methods of TiO2 nanoparticles in biological studies. Journal of Paramedical Sciences 6 (2):96–105. doi:10.22037/jps.v6i2.8686.
  • OEC. 2021. Cellulose product trade, exporters and importers. The Observatory of Economic Complexity. Accessed November 11. https://oec.world/en/profile/hs92/cellulose
  • Parangi, T., and M. K. Mishra. 2021. Titanium dioxide as energy storage material: A review on recent advancement. In Titanium dioxide, ed. H. M. Ali. IntechOpen. doi:10.5772/intechopen.99254.
  • Pellegrino, F., L. Pellutiè, F. Sordello, C. Minero, E. Ortel, V. D. Hodoroaba, and V. Maurino. 2017. Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles. Applied Catalysis B: Environmental 216:80–87. doi:10.1016/j.apcatb.2017.05.046.
  • Phisalaphong, M., and N. Jatupaiboon. 2008. Biosynthesis and characterization of bacteria cellulose-chitosan film. Carbohydrate Polymers 74 (3):482–88. doi:10.1016/j.carbpol.2008.04.004.
  • Plermjai, K., K. Boonyarattanakalin, W. Mekprasart, W. Phoohinkong, S. Pavasupree, and W. Pecharapa. 2019. Optical absorption and FTIR study of Cellulose/TiO2 hybrid composites. Chiang Mai Journal of Science 46 (3):618–25.
  • Portela, R., C. R. Leal, P. L. Almeida, and R. G. Sobral. 2019. Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microbial Biotechnology 12 (4):586–610. doi:10.1111/1751-7915.13392.
  • Qiu, K., and A. N. Netravali. 2014. A review of fabrication and applications of bacterial cellulose based nanocomposites. Polymer Reviews 54 (4):598–626. doi:10.1080/15583724.2014.896018.
  • Research and Market. 2021. Cellulose fiber market size, share & trends analysis by product type (Natural, Synthetic), by application (Textile, Hygiene, Industrial), by Regions and segment forecasts, 2018 - 2025. Accessed November 12. https://www.researchandmarkets.com/reports/4031914/cellulose-fiber-market-size-share-and-trends
  • Rizaty, M. A. 2020. Pineapple becomes the leading fruit commodity with the highest export volume. (In Indonesian). databoks.katadata.co.id. Accessed November 11. https://databoks.katadata.co.id/datapublish/2021/03/12/nanas-jadi-komoditas-buah-unggulan-dengan-volume-ekspor-tertinggi
  • Sardjono, S. A., H. S. Aminnudin, and M. Muhajir. 2019. Crystallinity and morphology of the bacterial nanocellulose membrane extracted from pineapple peel waste using high-pressure homogenizer. AIP Conference Proceedings 2120 (1):080015. doi:10.1063/1.5115753.
  • Schütz, C., J. Sort, Z. Bacsik, V. Oliynyk, E. Pellicer, A. Fall, L. Wågberg, L. Berglund, L. Bergström, and G. Salazar-Alvarez. 2012. Hard and transparent films formed by Nanocellulose–TiO2 nanoparticle hybrids. PLoS ONE 7 (10):e45828. Edited by Elena A. Rozhkova. doi:10.1371/journal.pone.0045828.
  • Serpa, R. B., G. K. Pinheiro, D. Müller, F. T. Reis, M. L. Sartorelli, and C. R. Rambo. 2021. TiO2 aerogel as interlock layer improves thermal stability in perovskite solar cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects 613 (80):126067. doi:10.1016/j.colsurfa.2020.126067.
  • Shah, N., M. Ul-Islam, W. Ahmad, and J. K. Park. 2013. Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydrate Polymers 98 (2):1585. doi:10.1016/j.carbpol.2013.08.018.
  • Suryanto, H., M. Muhajir, B. D. Susilo, Y. R. A. Pradana, H. W. Wijaya, A. S. Ansari, and U. Yanuhar. 2021. Nanofibrillation of bacterial cellulose using high-pressure homogenization and its films characteristics. Journal of Renewable Materials 9 (10):1717–28. doi:10.32604/jrm.2021.015312.
  • Suryanto, H., T. A. Sutrisno, M. Muhajir, N. Zakia, and U. Yanuhar. 2018. Effect of peroxide treatment on the structure and transparency of bacterial cellulose film. MATEC Web of Conferences 204:05015. doi:10.1051/matecconf/201820405015.
  • Thamaphat, K., P. Limsuwan, and B. Ngotawornchai. 2008. Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J 42:357–61.
  • Tienne, L. G. P., F. D. P. B. Santos, and V. de Fátima Marques. 2020. Hybrids of Cellulose-TiO2 for environmental application. Chemistry & Chemical Technology 14 (1):93–101. doi:10.23939/chcht14.01.093.
  • Ul-Islam, M., T. Khan, and J. K. Park. 2012. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymers 88 (2):596–603. doi:10.1016/j.carbpol.2012.01.006.
  • Valerga, A. P., S. R. Fernandez-Vidal, F. Girot, and A. J. Gamez. 2020. On the relationship between mechanical properties and crystallisation of chemically post-processed additive manufactured polylactic acid pieces. Polymers 12 (4):941. doi:10.3390/POLYM12040941.
  • Virkutyte, J., V. Jegatheesan, and R. S. Varma. 2012. Visible light activated TiO2/Microcrystalline cellulose nanocatalyst to destroy organic contaminants in water. Bioresource Technology 113:288–93. doi:10.1016/j.biortech.2011.12.090.
  • Wang, X., X. Wang, P. Xiao, J. Li, E. Tian, Y. Zhao, and Y. Ren. 2016. High water permeable free-standing cellulose triacetate/graphene oxide membrane with enhanced antibiofouling and mechanical properties for forward osmosis. Colloids and Surfaces A: Physicochemical and Engineering Aspects 508:327–35. doi:10.1016/j.colsurfa.2016.08.077.
  • Wittmar, A., H. Thierfeld, S. Köcher, and M. Ulbricht. 2015. Routes towards catalytically active TiO2 doped porous cellulose. RSC Advances 5 (45):35866–73. doi:10.1039/c5ra03707g.
  • Wu, W., L. Zhang, X. Zhai, C. Liang, and K. Yu. 2018. Preparation and photocatalytic activity analysis of nanometer TiO2 modified by surfactant. Nanomaterials and Nanotechnology 8:1–8. doi:10.1177/1847980418781973.
  • Xiao, Y. T., W. L. Chin, and S. B. Abd Hamid. 2015. Facile preparation of highly crystalline nanocellulose by using ionic liquid. Advanced Materials Research 1087:106–10. doi:10.4028/amr.1087.106https://www.scientific.net/
  • Xu, W. 2003. Effect of crosslinking treatment on the crystallinity, crystallite size, and strength of cotton fibers. Textile Research Journal 73 (5):433–36. doi:10.1177/004051750307300510.
  • Yu, K., E. M. Spiesz, S. Balasubramanian, D. T. Schmieden, A. S. Meyer, and M. E. Aubin-Tam. 2021. Scalable bacterial production of moldable and recyclable biomineralized cellulose with tunable mechanical properties. Cell Reports Physical Science 2 (6):100464. doi:10.1016/j.xcrp.2021.100464.
  • Zeng, J., S. Liu, J. Cai, and L. Zhang. 2010. TiO2 immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation. The Journal of Physical Chemistry C 114 (17):7806–11. doi:10.1021/jp1005617.
  • Zhu, T., Y. Lin, Y. Luo, X. Hu, W. Lin, P. Yu, and C. Huang. 2012. Preparation and characterization of TiO2-regenerated cellulose inorganic–polymer hybrid membranes for dehydration of caprolactam. Carbohydrate Polymers 87 (1):901–09. doi:10.1016/j.carbpol.2011.08.088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.