89
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Radiation-Induced Controlled Grafting from Lignocellulosic Fiber Towards Compatibilization for Composite Reinforcement

, , & ORCID Icon
Pages 14055-14066 | Published online: 01 Sep 2022

References

  • Ananthalakshmi, N. R., P. P. Wadgaonkar, S. Sivaram, and I. K. Varma. 1999. Thermal Behaviour of Glycidyl Methacrylate Homopolymers and Copolymers. Journal of Thermal Analysis and Calorimetry 58 (3):533–39. doi:10.1023/A:1010136007653.
  • Baltazar-Y-Jimenez, A., and A. Bismarck. 2007. Wetting Behaviour, Moisture up-Take and Electrokinetic Properties of Lignocellulosic Fibres. Cellulose 14 (2):115–27. doi:10.1007/s10570-006-9092-x.
  • Barsbay, M., and O. Guven. 2009. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner. Radiation Physics and Chemistry 78:1054–59. doi:10.1016/j.radphyschem.2009.06.022.
  • Barsbay, M., and O. Güven. 2013. RAFT Mediated Grafting of Poly(Acrylic Acid)(PAA) from Polyethylene/Polypropylene (PE/PP) Nonwoven Fabric via Preirradiation. Polymer 54 (18):4838–48. doi:10.1016/j.polymer.2013.06.059.
  • Barsbay, M., and O. Güven. 2019. Surface Modification of Cellulose via Conventional and Controlled Radiation-Induced Grafting. Radiation Physics and Chemistry 160:1–8. doi:10.1016/j.radphyschem.2019.03.002.
  • Barsbay, M., O. Güven, M. H. Stenzel, T. P. Davis, C. Barner-Kowollik, and L. Barner. 2007. Verification of Controlled Grafting of Styrene from Cellulose via Radiation-Induced RAFT Polymerization. Macromolecules 40 (20):7140–47. doi:10.1021/ma070825u.
  • Barsbay, M., Y. Kodama, and O. Güven. 2014. Functionalization of Cellulose with Epoxy Groups via γ-Initiated RAFT-Mediated Grafting of Glycidyl Methacrylate. Cellulose 21 (6):4067–79. doi:10.1007/s10570-014-0416-y.
  • Bhardwaj, Y., M. Tamada, Y. C. Nho, M. Nasef, and O. Guven. 2014. Harmonized Protocol for Radiation-Induced Grafting. IAEA Vienna 21. 10.1.1.738.2273
  • Bledzki, A.K., A.A. Mamun, M. Lucka-Gabor, and V.S. Gutowski. 2008. The Effects of Acetylation on Properties of Flax Fibre and Its Polypropylene Composites. Express Polymer Letters 2 (6):413–22. doi:10.3144/expresspolymlett.2008.50.
  • Çelik, G., M. Barsbay, and O. Güven. 2016. Towards New Proton Exchange Membrane Materials with Enhanced Performance via RAFT Polymerization. Polymer Chemistry 7 (3):701–14. doi:10.1039/C5PY01527H.
  • Chen, H., W. Zhang, X. Wang, H. Wang, Y. Wu, T. Zhong, and B. Fei. 2018. Effect of Alkali Treatment on Wettability and Thermal Stability of Individual Bamboo Fibers. Journal of Wood Science 64 (4):398–405. doi:10.1007/s10086-018-1713-0.
  • Chiefari, J., Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, P. T. L. Tam, T. A. M. Roshan, G. F. Meijs, C. L. Moad, and G. Moad. 1998. Living Free-Radical Polymerization by Reversible Addition− Fragmentation Chain Transfer: The RAFT Process. Macromolecules 31 (16):5559–62. doi:10.1021/ma9804951.
  • Feng, C., and X. Huang. 2018. Polymer Brushes: Efficient Synthesis and Applications. Accounts of Chemical Research 51 (9):2314–23. doi:10.1021/ACS.ACCOUNTS.8B00307.
  • Feng, X., J. Yu, T. Tesso, F. Dowell, and D. Wang. 2013. Qualitative and Quantitative Analysis of Lignocellulosic Biomass Using Infrared Techniques: A Mini-Review. Applied Energy 104:801–09. doi:10.1016/j.apenergy.2012.12.019.
  • Gurunathan, T., S. Mohanty, and K. N. Sanjay. 2015. A Review of the Recent Developments in Biocomposites Based on Natural Fibres and Their Application Perspectives. Composites Part A: Applied Science and Manufacturing Elsevier Ltd. 77:1–25. doi:10.1016/j.compositesa.2015.06.007.
  • Güven, O., S. N. Monteiro, E. A. B. Moura, and J. W. Drelich. 2016. Re-Emerging Field of Lignocellulosic Fiber – Polymer Composites and Ionizing Radiation Technology in Their Formulation. Polymer Reviews 56 (4):702–36. doi:10.1080/15583724.2016.1176037.
  • Hebeish, A., and J. Thomas Guthrie. 1981. Radiation-Induced Grafting onto Cellulosics. In The Chemistry and Technology of Cellulosic Copolymers, pp. 64–145. Berlin Heidelberg: Springer. doi:10.1007/978-3-642-67707-6_3.
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2012. Chemical Treatments on Plant-Based Natural Fibre Reinforced Polymer Composites: An Overview. Composites Part B: Engineering 43 (7):2883–92. doi:10.1016/j.compositesb.2012.04.053.
  • Kalia, S., B. S. Kaith, and I. Kaur. 2009. Pretreatments of Natural Fibers and Their Application as Reinforcing Material in Polymer Composites-A Review. Polymer Engineering & Science 49 (7):1253–72. doi:10.1002/pen.21328.
  • Kaur, I., N. Sharma, and V. Kumari. 2013. Graft Copolymerization of Acrylamide onto Rayon by Chemical and Radiation Methods. Fibers and Polymers 2013 14:4 14 (4):507–17. doi:10.1007/S12221-013-0507-7.
  • Khalid, K., J. T. David, H. F. Rasoul, M. Whittaker, and L. Rintoul. 2007. Raft Mediated Surface Grafting of T-Butyl Acrylate onto an Ethylene-Propylene Copolymer Initiated by Gamma Radiation. Journal of Polymer Science Part A, Polymer Chemistry 45 (6):1074–83. doi:10.1002/pola.21868.
  • Kodama, Y., M. Barsbay, and O. Güven. 2014. Poly(2-Hydroxyethyl Methacrylate) (PHEMA) Grafted Polyethylene/Polypropylene (PE/PP) Nonwoven Fabric by γ-Initiation: Synthesis, Characterization and Benefits of RAFT Mediation. Radiation Physics and Chemistry 105:31–38. doi:10.1016/j.radphyschem.2014.05.023.
  • LeMoigne, N., R. Sonnier, R. El Hage, and S. Rouif. 2017. Radiation-Induced modifications in natural fibres and their biocomposites: Opportunities for controlled physico-chemical modification pathways?. Industrial Crops and Products 109:199–213. doi:10.1016/j.indcrop.2017.08.027.
  • Leonie, B., N. Zwaneveld, S. Perera, Y. Pham, and T. P. Davis. 2002. Reversible Addition-Fragmentation Chain-Transfer Graft Polymerization of Styrene: Solid Phases for Organic and Peptide Synthesis. Journal of Polymer Science Part A, Polymer Chemistry 40 (23):4180–92. doi:10.1002/pola.10513.
  • Madrid, J. F., M. Barsbay, L. Abad, and O. Güven. 2016. Grafting of N, N-Dimethylaminoethyl Methacrylate from PE/PP Nonwoven Fabric via Radiation-Induced RAFT Polymerization and Quaternization of the Grafts. Radiation Physics and Chemistry 124:145–54. doi:10.1016/j.radphyschem.2016.01.004.
  • Madrid, J. F., Y. Ueki, L. V. Abad, T. Yamanobe, and N. Seko. 2017. Raft‐mediated Graft Polymerization of Glycidyl Methacrylate in Emulsion from Polyethylene/Polypropylene Initiated with γ‐radiation. Journal of Applied Polymer Science 134 (36):45270. doi:10.1002/app.45270.
  • Madrid, J. F., Y. Ueki, L. V. Abad, T. Yamanobe, and N. Seko. 2018. Enhanced Amination and Adsorption Performance of Functional Copolymer Synthesized via RAFT-Mediated Radiation Grafting in Emulsion. Journal of Polymer Research 25 (9):193. doi:10.1007/s10965-018-1585-4.
  • Madrid, J. F., Y. Ueki, and N. Seko. 2013. Abaca/polyester Nonwoven Fabric Functionalization for Metal Ion Adsorbent Synthesis via Electron Beam-Induced Emulsion Grafting. Radiation Physics and Chemistry 90:104–10. doi:10.1016/j.radphyschem.2013.05.004.
  • Mishra, S., M. Misra, S. S. Tripathy, S. K. Nayak, and A. K. Mohanty. 2001. Graft Copolymerization of Acrylonitrile on Chemically Modified Sisal Fibers. Macromolecular Materials and Engineering 286 (2):107–13. doi:10.1002/1439-2054(20010201)286:2<107:AID-MAME107>3.0.CO;2-0.
  • Moad, G., and C. Barner-Kowollik. 2008 September. The Mechanism and Kinetics of the RAFT Process: Overview, Rates, Stabilities, Side Reactions, Product Spectrum and Outstanding Challenges. Handbook of RAFT Polymerization 51–104. doi:10.1002/9783527622757.CH3.
  • Moad, G., E. Rizzardo, and S. H. Thang. 2005. Living Radical Polymerization by the RAFT Process. Australian Journal of Chemistry 58 (6):379–410. doi:10.1071/CH05072.
  • Naik, D. L., and T. H. Fronk. 2016. Weibull distribution analysis of the tensile strength of the kenaf bast fiber. Fibers and Polymers 17 (10):1696–701. doi:10.1007/S12221-016-6176-6.
  • Perrier, S. 2017. 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules 50 (19):7433–47. doi:10.1021/ACS.MACROMOL.7B00767.
  • Raghavendran, V. K., and L. T. Drzal. 2002. Fiber-Matrix Interfacial Adhesion Improvement in Carbon Fiber-Bisphenol-a Polycarbonate Composites by Polymer Grafting. The Journal of Adhesion 78 (10):895–922. doi:10.1080/00218460214096.
  • Stannett, V. T. 1990. Radiation Grafting — State-of-the-Art. International Journal of Radiation Applications and Instrumentation Part C Radiation Physics and Chemistry 35 (1–3):82–87. doi:10.1016/1359-0197(90)90062-M.
  • Vosloo, J. J., D. De Wet-Roos, M. P. Tonge, and R. D. Sanderson. 2002. Controlled Free Radical Polymerization in Water-Borne Dispersion Using Reversible Addition-Fragmentation Chain Transfer. Macromolecules 35 (13):4894–902. doi:10.1021/ma011617j.
  • Wong, W. S. Y. 2019. Surface Chemistry Enhancements for the Tunable Super-Liquid Repellency of Low-Surface-Tension Liquids. Nano Letters 19 (3):1892–901. doi:10.1021/acs.nanolett.8b04972.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.