113
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Thermo-Mechanical Properties of Polypropylene Composites Filled with Recycled Office Waste Paper

ORCID Icon, ORCID Icon, , , &
Pages 14089-14101 | Published online: 05 Sep 2022

References

  • Abdelwahab, M. A., M. Misra, and A. K. Mohanty. 2019. Injection molded biocomposites from polypropylene and lignin: Effect of compatibilizers on interfacial adhesion and Performance. Industrial Crops and Products Elsevier. 132 (January):497–510. doi:10.1016/j.indcrop.2019.02.026.
  • Bhasney, M., A. K. Siddharth, and V. Katiyar. 2020. Microcrystalline cellulose, polylactic acid and polypropylene biocomposites and its morphological, mechanical, thermal and rheological properties. Composites Part B: Engineering 184:107717. 184(August2019). Elsevier Ltd. doi:10.1016/j.compositesb.2019.107717.
  • Chen, T., C. D. Mansfield, L. Ju, and D. G. Baird. 2020, July. The influence of mechanical recycling on the properties of thermotropic liquid crystalline polymer and long glass fiber reinforced Polypropylene. ( Elsevier Ltd: 108316) Composites Part B: Engineering 200:108316. doi:10.1016/j.compositesb.2020.108316.
  • de Bomfim, A. Shayene Campos, H. Jacobus Cornelis Voorwald, K. C. de Carvalho Benini, D. M. de Oliveira, M. Ferreira Fernandes, and M. Odila Cioffi. 2021. Sustainable application of recycled espresso coffee capsules: Natural composite development for a home composter product. Journal of Cleaner Production 297. doi:10.1016/j.jclepro.2021.126647.
  • de Carvalho Benini, K. C. C., H. Jacobus Cornelis Voorwald, M. Odila Hilário Cioffi, A. Cecília Milanese, and H. L. Ornaghi. 2017. Characterization of a new lignocellulosic fiber from Brazil: Imperata Brasiliensis (Brazilian Satintail) as an Alternative Source for Nanocellulose Extraction. Journal of Natural Fibers Taylor & Francis. 14 (1):112–25. doi:10.1080/15440478.2016.1167647.
  • Etaati, A., S. Pather, Z. Fang, and H. Wang. 2014. The study of fibre/Matrix bond strength in short hemp polypropylene composites from dynamic mechanical analysis. Composites Part B: Engineering 62:19–28. Elsevier Ltd. doi:10.1016/j.compositesb.2014.02.011.
  • García-García, D., A. Carbonell, M. D. Samper, D. García-Sanoguera, and R. Balart. 2015. Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering 78:256–65. Elsevier Ltd. doi:10.1016/j.compositesb.2015.03.080.
  • Habib, A., Y. Nawab, A. Amjad, A. Anjang, H. M. Akil, and M. Shukur Zainol Abidin. 2021. Environmental benign natural fibre reinforced thermoplastic composites: A review. Composites Part C: Open Access 4 (August2020) Elsevier B.V.: 100082. doi: 10.1016/j.jcomc.2020.100082.
  • Hansen, B., C. Borsoi, M. Aurélio Dahlem Júnior, and A. Luis Catto. 2019. Thermal and thermo-mechanical properties of polypropylene composites using yerba mate residues as reinforcing filler. Industrial Crops and Products Elsevier. 140 (May):111696. doi:10.1016/j.indcrop.2019.111696.
  • Ishizaki, M. H., L. L. Y. Visconte, C. R. G. Furtado, M. C. A. M. Leite, and J. L. Leblanc. 2006. Caracterização Mecânica e Morfológica de Compósitos de polipropileno e fibras de Coco Verde: Influência Do Teor de Fibra e Das Condições de Mistura. Polímeros 16 (3):182–86. doi:10.1590/s0104-14282006000300006.
  • Iyer, K. A., J. Lechanski, and J. M. Torkelson. 2016. Green polypropylene/Waste paper composites with superior modulus and crystallization behavior: Optimizing specific energy in solid-state shear pulverization for filler size reduction and dispersion. Composites: Part A, Applied Science and Manufacturing 83:47–55. Elsevier Ltd. doi:10.1016/j.compositesa.2015.09.011.
  • John, M. J., and R. D. Anandjiwala. 2009. Chemical modification of flax reinforced Polypropylene composites. Composites: Part A, Applied Science and Manufacturing Elsevier Ltd. 40 (4):442–48. doi:10.1016/j.compositesa.2009.01.007.
  • Kumar, V., P. Pathak, and N. Kant Bhardwaj. 2020. Waste paper: An underutilized but promising source for nanocellulose mining. Waste Management 102:281–303. Elsevier Ltd. doi:10.1016/j.wasman.2019.10.041.
  • Lei, W., C. Fang, X. Zhou, Q. Yin, S. Pan, R. Yang, D. Liu, and Y. Ouyang. 2018. Cellulose nanocrystals obtained from office waste paper and their potential application in PET packing materials. Carbohydrate Polymers 181(September2017). Elsevier. 376–85. 10.1016/j.carbpol.2017.10.059.
  • Moreno, D. D. P., and C. Saron. 2017. Low-Density polyethylene waste/recycled wood composites. Composite Structures 176:1152–57. doi:10.1016/j.compstruct.2017.05.076.
  • Nanni, A., and M. Messori. 2018. A comparative study of different winemaking by-products derived additives on oxidation stability, mechanical and thermal proprieties of polypropylene. Polymer Degradation and Stability Elsevier. 149 (January):9–18. doi:10.1016/j.polymdegradstab.2018.01.012.
  • Oliva, C., W. Huang, S. El Badri, M. Ai Lan Lee, J. Ronholm, L. Chen, and Y. Wang. 2020, March. Concentrated sulfuric acid aqueous solution enables rapid recycling of cellulose from waste paper into antimicrobial packaging. ( Elsevier) Carbohydrate Polymers 241:116256. doi:10.1016/j.carbpol.2020.116256.
  • Pǎrpǎriţǎ, E., M. Tatiana Nistor, M. Cristina Popescu, and C. Vasile. 2014. TG/FT-IR/MS study on thermal decomposition of polypropylene/biomass composites. Polymer Degradation and Stability 109:13–20. doi:10.1016/j.polymdegradstab.2014.06.001.
  • Pereira, P. H. F., K. C. C. de Carvalho Benini, C. Yumi Watashi, H. Jacobus Cornelis Voorwald, and M. Odila Hilário Cioffi. 2013. Characterization of high density polyethylene (HDPE) reinforced with banana peel fibers. BioResources 8 (2):2351–65. doi:10.15376/biores.8.2.2351-2365.
  • Pereira, P. H. F., M. de de Freitas Rosa, M. Odila Hilário Cioffi, K. C. C. de Carvalho Benini, A. Cecília Milanese, H. Jacobus Cornelis Voorwald, and D. Regina Mulinari. 2015. Vegetal fibers in polymeric compositeS : A review. Polimeros 25 (1):9–22. doi:10.1590/0104-1428.1722.
  • Prambauer, M., C. Paulik, and C. Burgstaller. 2015. The influence of paper type on the properties of structural paper - polypropylene composites. Composites: Part A, Applied Science and Manufacturing 74:107–13. Elsevier Ltd. doi:10.1016/j.compositesa.2015.04.004.
  • Quitadamo, A., C. Santulli, M. Valente, and J. Tirill. 2017. “Paper Fi Ber Fi Lled Polymer. Mechanical Evaluation and Interfaces Modi Fi Cation” 110:520–29. doi:10.1016/j.compositesb.2016.11.013
  • Romanzini, D., H. L. Ornaghi, S. C. Amico, and A. J. Zattera. 2012. Influence of fiber hybridization on the dynamic mechanical properties of glass/ramie fiber-reinforced POLYESTER COMPOSITES. Journal of Reinforced Plastics and Composites 31 (23):1652–61. doi:10.1177/0731684412459982.
  • Saba, N., M. J. Othman, Y. Alothman, and M. T. Paridah. 2016. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Construction and Building Materials 106:149–59. Elsevier Ltd. doi:10.1016/j.conbuildmat.2015.12.075.
  • Spadetti, C., E. Alves Da Silva Filho, G. Lopes De Sena, and C. Vital Paixão De Melo. 2017. Propriedades térmicas e mecânicas dos compósitos de Polipropileno pós-consumo reforçados com fibras de celulose. Polímeros 27 (spe):84–90. doi:10.1590/0104-1428.2320.
  • Steven, S., A. Genovese, and R. A. Shanks. 2009. Polypropylene-Microcrystalline cellulose composites with enhanced compatibility and properties. Composites: Part A, Applied Science and Manufacturing Elsevier Ltd. 40 (6–7):791–99. doi:10.1016/j.compositesa.2009.03.011.
  • Thomason, J. L., and J. L. Rudeiros-Fernández. 2021. Thermal degradation behaviour of natural fibres at thermoplastic composite processing temperatures. Polymer Degradation and Stability 188:109594. Elsevier Ltd. doi:10.1016/j.polymdegradstab.2021.109594.
  • Ummartyotin, S., and C. Pechyen. 2016. Microcrystalline-Cellulose and polypropylene based composite: a simple, selective and effective material for microwavable packaging. Carbohydrate Polymers 142:133–40. Elsevier Ltd. doi:10.1016/j.carbpol.2016.01.020.
  • United Nations. 2018. Transforming our worlD: The 2030 agenda for sustainable development. A/RES/70/1. 40. 10.1007/s13398-014-0173-7.2.
  • Yiga, V. A., S. Pagel, M. Lubwama, S. Epple, P. Wilberforce Olupot, and C. Bonten. 2020. Development of fiber-reinforced polypropylene with NaOH pretreated rice and coffee husks as fillers: Mechanical and thermal properties. Journal of Thermoplastic Composite Materials 33 (9):1269–91. doi:10.1177/0892705718823255.
  • Zander, N. E., J. H. Park, Z. R. Boelter, and M. A. Gillan. 2019. Recycled cellulose polypropylene composite feedstocks for material extrusion additive manufacturing. ACS Omega 4 (9):13879–88. doi:10.1021/acsomega.9b01564.
  • Zhang, Q., M. Usman Khan, X. Lin, W. Yi, and H. Lei. 2020. Green-Composites produced from waste residue in pulp and paper industry: A sustainable way to manage industrial wastes. Journal of Cleaner Production 262:121251. Elsevier Ltd. doi:10.1016/j.jclepro.2020.121251.
  • Zhao, W., C. Kumar Kundu, Z. Li, X. Li, and Z. Zhang. 2021, February. Flame retardant treatments for polypropylene: Strategies and recent advances. ( Elsevier Ltd) Composites: Part A, Applied Science and Manufacturing 145:106382. doi:10.1016/j.compositesa.2021.106382.
  • Zulkifli, N., N. S. Izzati, H. Anuar, and N. Zainuddin. 2015. Mechanical properties and failure modes of recycled polypropylene/Microcrystalline cellulose composites. Materials & Design 69:114–23. Elsevier Ltd. doi:10.1016/j.matdes.2014.12.053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.