181
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The Effect of Acid Hydrolysis Parameters on the Properties of Nanocellulose Extracted from Almond Shells

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 14102-14114 | Published online: 02 Sep 2022

References

  • Aguayo, M., A. Fernández Pérez, G. Reyes, C. Oviedo, W. Gacitúa, R. Gonzalez, and O. Uyarte. 2018. Isolation and characterization of cellulose nanocrystals from rejected fibers originated in the kraft pulping process. Polymers 10 (10):1145. doi:10.3390/polym10101145.
  • Bin, L., W. Xu, D. Kronlund, A. Määttänen, J. Liu, J.-H. Smått, J. Peltonen, S. Willför, X. Mu, and C. Xu. 2015. Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydrate Polymers 133:605–12. doi:10.1016/j.carbpol.2015.07.033.
  • Bos, A., and C. Hamelinck. 2014. Greenhouse gas impact of marginal fossil fuel use. Report No. BIENL14773. Netherlands: ECOFYS Netherlands B.V. Retrieved 4 December 2021. https://www.sugarcane.org/wp-content/uploads/2020/12/ecofys-2014-ghg-impact-of-marginal-fossil-fuels.pdf
  • Carrillo, I., R. Teixeira Mendonça, M. Ago, and O. J. Rojas. 2018. Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose 25 (2):1011–29. doi:10.1007/s10570-018-1653-2.
  • Cheng, M., Z. Qin, Y. Chen, S. Hu, Z. Ren, and M. Zhu. 2017. Efficient extraction of cellulose nanocrystals through hydrochloric acid hydrolysis catalyzed by inorganic chlorides under hydrothermal conditions. ACS Sustainable Chemistry & Engineering 5 (6):4656–64. doi:10.1021/acssuschemeng.6b03194.
  • Dong, S., M. J. Bortner, and M. Roman. 2016. Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: A central composite design study. Industrial Crops and Products 93:76–87. doi:10.1016/j.indcrop.2016.01.048.
  • Ebringerová, A., Z. Hromádková, K. Zuzana, and V. Sasinková. 2007. Chemical valorization of agricultural by-products: Isolation and characterization of xylan-based antioxidants from almond shell biomass. Bioresources 3:60–70. Accessed 18 April 2022.
  • Fahma, F., S. Iwamoto, N. Hori, T. Iwata, and A. Takemura. 2010. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17 (5):977–85. doi:10.1007/s10570-010-9436-4.
  • Fukuzumi, H., T. Saito, Y. Okita, and A. Isogai. 2010. Thermal stabilization of TEMPO-oxidized cellulose. Polymer Degradation and Stability 95 (9):1502–08. doi:10.1016/j.polymdegradstab.2010.06.015.
  • Future Markets, Inc. The Global Market for Cellulose Nanofibers to 2030, 2018. https://www.marketresearch.com/Future-Markets-Inc-v3760/Global-Cellulose-Nanofibers-12045523/
  • Ghasemi, S., R. Behrooz, and I. Ghasemi. 2016. Extraction and characterization of nanocellulose structures from linter dissolving pulp using ultrafine grinder. Journal of Nanoscience and Nanotechnology 16 (6):5791–97. doi:10.1166/jnn.2016.12416.
  • Haafiz, M. M., A. Hassan, Z. Zakaria, and I.M. Inuwa. 2014. Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydrate Polymers 103:119–25. doi:10.1016/j.carbpol.2013.11.055.
  • Hasanin, M.S., and S.A.A. Kiey. 2020. Environmentally benign corrosion inhibitors based on cellulose niacin nano-composite for corrosion of copper in sodium chloride solutions. International Journal of Biological Macromolecules 161:345–54. doi:10.1016/j.ijbiomac.2020.06.040.
  • He, Y., G. Li, K.H. Hwang, Y. Boluk, and P.M. Claesson. 2021. Nano-Scale mechanical and wear properties of a corrosion protective coating reinforced by cellulose nanocrystals–initiation of coating degradation. Applied Surface Science 537:147789. doi:10.1016/j.apsusc.2020.147789.
  • Ioelovich, M. 2012. Study of cellulose interaction with concentrated solutions of sulfuric acid. International Scholarly Research Notices 2012. doi:10.5402/2012/428974.
  • Jiang, F., and Y.-L. Hsieh. 2013. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate Polymers 95 (1):32–40. doi:10.1016/j.carbpol.2013.02.022.
  • Johar, N., I. Ahmad, and A. Dufresne. 2012. Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Industrial Crops and Products 37 (1):93–99. doi:10.1016/j.indcrop.2011.12.016.
  • Lee, H.V., S.B.A. Hamid, and S.K. Zain. 2014. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. The Scientific World Journal Article Article 2014:ID631013. doi:10.1155/2014/631013.
  • Lichtenstein, K., and N. Lavoine. 2017. Toward a deeper understanding of the thermal degradation mechanism of nanocellulose. Polymer Degradation and Stability 146:53–60. doi:10.1016/j.polymdegradstab.2017.09.018.
  • Mohammed, M. A., W.J. Basirun, N.M.M. Abd Rahman, and N. M. Salleh. 2021. The effect of particle size of almond shell powders, temperature and time on the extraction of cellulose. Journal of Natural Fibers 1–11. doi:10.1080/15440478.2021.1881689.
  • Okonko, I.O., O.T. Adeola, F.E. Aloysius, A.O. Damilola, and O.A. Adewale. 2009. Utilization of food wastes for sustainable development. Electronic Journal of Environmental, Agricultural and Food Chemistry 8 (4):263–86.
  • Pk, S., S. Duhan, and J.S. Duhan. 2018. Agro-Industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing 5 (1). doi:10.1186/s40643-018-0226-4.
  • Putra, S.S.S., W.J. Basirun, A.A.M. Elgharbawy, A. Hayyan, M. Hayyan, and M.A. Mohammed. 2022. Nanocellulose and natural deep eutectic solvent as potential biocatalyst system toward enzyme immobilization. Molecular Catalysis 528:112422. doi:10.1016/j.mcat.2022.112422.
  • Qian, L., J. Zhou, and L. Zhang. 2009. Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. Journal of Polymer Science Part B, Polymer Physics 47 (11):1069–77. doi:10.1002/polb.21711.
  • Rodríguez-Couto, S. 2008. Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnology Journal 3 (7):859–70. doi:10.1002/biot.200800031.
  • Rongji, L., J. Fei, Y. Cai, Y. Li, J. Feng, and J. Yao. 2009. Cellulose whiskers extracted from mulberry: A novel biomass production. Carbohydrate Polymers 76 (1):94–99. doi:10.1016/j.carbpol.2008.09.034.
  • Samir, A., M. Ahmed Said, F. Alloin, and A. Dufresne. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6 (2):612–26. doi:10.1021/bm0493685.
  • Shahbandeh, M. 2021. Almond production worldwide. Accessed 20 April 2022.
  • Shaheen, T. I., and H. E. Emam. 2018. Sono-Chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis. International Journal of Biological Macromolecules 107:1599–606. doi:10.1016/j.ijbiomac.2017.10.028.
  • Shalauddin, M., S. Akhter, W.F. Basirun, N.S. Anuar, O. Akbarzadeh, M.A. Mohammed, and M.R. Johan. 2022. Carboxylated nanocellulose dispersed nitrogen doped graphene nanosheets and sodium dodecyl sulfate modified electrochemical sensor for the simultaneous determination of paracetamol and naproxen sodium. Measurement 194:110961. doi:10.1016/j.measurement.2022.110961.
  • Shalauddin, M., S. Akhter, W.F. Basirun, S. Bagheri, N.S. Anuar, and M.R. Johan. 2019. Hybrid nanocellulose/f-MWCNTs nanocomposite for the electrochemical sensing of diclofenac sodium in pharmaceutical drugs and biological fluids. Electrochimica Acta 304:323–33. doi:10.1016/j.electacta.2019.03.003.
  • Wang R, L. Chen, J. Zhu, and R. Yang. 2017. Tailored and Integrated Production of Carboxylated Cellulose Nanocrystals (CNC) with Nanofibrils (CNF) through Maleic Acid Hydrolysis. ChemNanoMat 3(5):328–335. doi:10.1002/cnma.201700015.
  • Wu, H., X. Han, W. Zhao, Q. Zhang, A. Zhao, and J. Xia. 2022. Mechanical and electrochemical properties of UV-curable nanocellulose/urushiol epoxy acrylate anti-corrosive composite coatings. Industrial Crops and Products 181:114805. doi:10.1016/j.indcrop.2022.114805.
  • Wulandari, W.T., A. Rochliadi, and I.M. Arcana. 2016. Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conf. Series: Materials Science and Engineering 107. doi:10.1088/1757-899X/107/1/012045.
  • Xie, H., H. Du, X. Yang, and C. Si. 2018. Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. International Journal of Polymer Science 2018:1–25. doi:10.1155/2018/7923068.
  • Xuemin, L., Y. Liu, J. Hao, and W. Wang. 2018. Study of almond shell characteristics. Materials 11 (9):1782. doi:10.3390/ma11091782.
  • Zhang, S.Q., J. Wang, Z. D. Jun Shen, Z.Q. Lai, B. Zhou, S.M. Attia, and L.Y. Chen. 1999. The investigation of the adsorption character of carbon aerogels. Nanostructured Materials 11 (3):375–81. doi:10.1016/S0965-9773(99)00054-9.
  • Zheng, D., Y. Zhang, Y. Guo, and J. Yue. 2019. Isolation and characterization of nanocellulose with a novel shape from walnut (Juglans regia L.) shell agricultural waste. Polymers 11 (7):1130. doi:10.3390/polym11071130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.