902
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Highly Stretchable CIP–PDMS Composites with Partial Interface Bonding for Electromagnetic Noise Suppression in GHz Frequency Range

, , , &

References

  • Asmatulu, R., P. K. Bollavaram, V. R. Patlolla, I. M. Alarifi, and W. S. Khan. 2020. Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding. Advanced Composites and Hybrid Materials 3 (1):66–14. doi:10.1007/s42114-020-00135-7.
  • Bayat, A., M. Ebrahimi, S. R. Ardekani, E. S. Iranizad, and A. Z. Moshfegh. 2021. Extended Gibbs free energy and laplace pressure of ordered hexagonal close-packed spherical particles: A wettability study. Langmuir 37 (28):8382–92. doi:10.1021/acs.langmuir.1c00343.
  • Chen, W., L. X. Liu, H. B. Zhang, and Z. Z. Yu. 2021a. Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15 (4):7668–81. doi:10.1021/acsnano.1c01277.
  • Chen, W., L.-X. Liu, H.-B. Zhang, and Y. Zhong-Zhen. 2021b. Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15 (4):7668–81. doi:10.1021/acsnano.1c01277.
  • Chen, Q., L. Li, Z. Wang, Y. Ge, C. Zhou, and J. Yi. 2019. Synthesis and enhanced microwave absorption performance of CIP@ [email protected] ferrite composites. Journal of Alloys and Compounds 779:720–27. doi:10.1016/j.jallcom.2018.11.112.
  • Chen, Y., Y. Yang, Y. Xiong, L. Zhang, W. Xu, G. Duan, C. Mei, S. Jiang, Z. Rui, and K. Zhang. 2021.Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 38: 101204.doi: 10.1016/j.nantod.2021.101204
  • Chen, X., J. Yu, S. Kong, Z. Wu, X. Fang, and L. Wen. 2019. Towards real-time advancement of underwater visual quality with GAN. IEEE Transactions on Industrial Electronics 66 (12):9350–59. doi:10.1109/TIE.2019.2893840.
  • Chortos, A., J. Liu, and Z. Bao. 2016. Pursuing prosthetic electronic skin. Nature Materials 15 (9):937–50. doi:10.1038/nmat4671.
  • Douillard, J. M., T. Zoungrana, and S. Partyka. 1995. Surface Gibbs free energy of minerals: Some values. Journal of Petroleum Science and Engineering 14 (1):51–57. doi:10.1016/0920-4105(95)00018-6.
  • Edwards, C., and R. Marks. 1995. Evaluation of biomechanical properties of human skin. Clinics in Dermatology 13 (4):375–80. doi:10.1016/0738-081X(95)00078-T.
  • Erik, D., T. W. Ebbesen, A. Krishnan, M.J.T. Michael . 1998. Wetting of single shell carbon nanotubes Advanced Materials, 10 (17):1472–75.
  • Fan, Z., D. Wang, Y. Yuan, Y. Wang, Z. Cheng, Y. Liu, and Z. Xie. 2020.A lightweight and conductive MXene/graphene hybrid foam for superior electromagnetic interference shielding. Chemical Engineering Journal 381: 122696.doi: 10.1016/j.cej.2019.122696
  • Feng, D., D. Xu, Q. Wang, and P. Liu. 2019. Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering. Journal of Materials Chemistry C 7 (26):7938–46. doi:10.1039/c9tc02311a.
  • Freudig, B., S. Hogekamp, and J. Helmar. 1999. Dispersion of powders in liquids in a stirred vessel. Chemical Engineering Schubert, and Processing: Process Intensification 38 (4–6): 525–32.
  • Gao, W., N. Zhao, T. Yu, J. Xi, A. Mao, M. Yuan, H. Bai, and C. Gao. 2020. High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157:570–77. doi:10.1016/j.carbon.2019.10.051.
  • Garg, P., A. Jamwal, D. Kumar, K. Kumar Sadasivuni, C. Mustansar Hussain, and P. Gupta. 2019. Advance research progresses in aluminium matrix composites: Manufacturing & applications. Journal of Materials Research and Technology 8 (5):4924–39. doi:10.1016/j.jmrt.2019.06.028.
  • Gong, Y. X., L. Zhen, J. T. Jiang, C. Y. Xu, and W. Z. Shao. 2009. Preparation of CoFe alloy nanoparticles with tunable electromagnetic wave absorption performance. Journal of Magnetism and Magnetic Materials 321 (22):3702–05. doi:10.1016/j.jmmm.2009.07.019.
  • Guo, Y., Q. Wu, and C. Yao. 2021. Aggregation behavior of a pH-responsive cationic–nonionic silicone surfactant in aqueous solution. Colloid and Interface Science Communications 42:100401. doi:10.1016/j.colcom.2021.100401.
  • Gupta, S., and N.-H. Tai. 2019. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152:159–87. doi:10.1016/j.carbon.2019.06.002.
  • Harikrishnan, A. R., S. K. Das, P. K. Agnihotri, and P. Dhar. 2017. Particle and surfactant interactions effected polar and dispersive components of interfacial energy in nanocolloids. Journal of Applied Physics 122 (5). doi: 10.1063/1.4997123.
  • Huang, K., M. Chen, G. He, X. Hu, W. He, X. Zhou, Y. Huang, and Z. Liu. 2020. Stretchable microwave absorbing and electromagnetic interference shielding foam with hierarchical buckling induced by solvent swelling. Carbon 157:466–77. doi:10.1016/j.carbon.2019.10.059.
  • Jeon, S., J. Kim, and K. Hyeon Kim. 2019. Microwave absorption properties of graphene oxide capsulated carbonyl iron particles. Applied Surface Science 475:1065–69. doi:10.1016/j.apsusc.2019.01.017.
  • Jiang, Z. Y., W. Huang, L. S. Chen, and Y. H. Liu. 2019. Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding. Optics Express 27 (17):24194–206. doi:10.1364/OE.27.024194.
  • Jiang, D., V. Murugadoss, Y. Wang, J. Lin, T. Ding, Z. Wang, Q. Shao, C. Wang, H. Liu, N. Lu, et al. 2019. Electromagnetic interference shielding polymers and nanocomposites - a review. Polymer Reviews 59 (2):280–337. doi:10.1080/15583724.2018.1546737.
  • Jia, L.-C., L. Xu, F. Ren, P.-G. Ren, D.-X. Yan, and L. Zhong-Ming. 2019. Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon 144:101–08. doi:10.1016/j.carbon.2018.12.034.
  • Jung, J., H. Lee, I. Ha, H. Cho, K. Kyu Kim, J. Kwon, P. Won, S. Hong, and K. Seung Hwan. 2017. Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Applied Materials & Interfaces 9 (51):44609–16. doi:10.1021/acsami.7b14626.
  • Kim, H., S. Park, S. Kim, and Y. Seo. 2019. Microwave absorption and shielding property of Fe–Si–Al alloy/MWCNT/polymer nanocomposites. Langmuir 35 (21):6950–55. doi:10.1021/acs.langmuir.8b04160.
  • Kim, S. W., Y. W. Yoon, S. J. Lee, G. Y. Kim, Y. B. Kim, Y. Yeo Chun, and K. S. Lee. 2007. Electromagnetic shielding properties of soft magnetic powder–polymer composite films for the application to suppress noise in the radio frequency range. Journal of Magnetism and Magnetic Materials 316 (2):472–74. doi:10.1016/j.jmmm.2007.03.133.
  • Klonos, P. A., O. V. Goncharuk, E. M. Pakhlov, D. Sternik, A. Deryło-Marczewska, A. Kyritsis, V. M. Gun’Ko, and P. Pissis. 2019. Morphology, molecular dynamics, and interfacial phenomena in systems based on silica modified by grafting polydimethylsiloxane chains and physically adsorbed polydimethylsiloxane. Macromolecules 52 (7):2863–77. doi:10.1021/acs.macromol.9b00155.
  • Klonos, P., P. Pissis, and A. Kyritsis. 2017. Effects of hydration/dehydration on interfacial polymer fraction and dynamics in nanocomposites based on metal–oxides and physically adsorbed polymer. The Journal of Physical Chemistry C 121 (35):19428–41. doi:10.1021/acs.jpcc.7b05267.
  • Liang, J., Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen. 2009. Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47 (3):922–25. doi:10.1016/j.carbon.2008.12.038.
  • Liu, C., J. Cai, P. Dang, X. Li, and D. Zhang. 2020. Highly stretchable electromagnetic interference shielding materials made with conductive microcoils confined to a honeycomb structure. ACS Applied Materials & Interfaces 12 (10):12101–08. doi:10.1021/acsami.0c00034.
  • Liu, H., R. Fu, X. Su, B. Wu, H. Wang, Y. Xu, and X. Liu. 2021.Electrical insulating MXene/PDMS/BN composite with enhanced thermal conductivity for electromagnetic shielding application. Composites Communications 23: 100593.doi: 10.1016/j.coco.2020.100593
  • Maruthi, N., M. Faisal, and N. Raghavendra. 2021. Conducting polymer based composites as efficient EMI shielding materials: A comprehensive review and future prospects. Synthetic Metals 272. doi:10.1016/j.synthmet.2020.116664.
  • Mondal, S., P. Das, S. Ganguly, R. Ravindren, S. Remanan, P. Bhawal, T. Kanti Das, and N. Ch Das. 2018. Thermal-air ageing treatment on mechanical, electrical, and electromagnetic interference shielding properties of lightweight carbon nanotube based polymer nanocomposites. Composites Part A: Applied Science and Manufacturing 107:447–60. doi:10.1016/j.compositesa.2018.01.025.
  • Niandu, W., X. Liu, C. Zhao, C. Cui, and A. Xia. 2016. Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules. Journal of Alloys and Compounds 656:628–34. doi:10.1016/j.jallcom.2015.10.027.
  • Pan, W., J. Wang, L. Yong-Ping, X.-B. Sun, J.-P. Wang, X.-X. Wang, J. Zhang, H.-D. You, Y. Gui-Feng, and Y.-Z. Long. 2020. Facile preparation of highly stretchable TPU/Ag nanowire strain sensor with spring-like configuration. Polymers 12 (2):339.
  • Ramírez, J., A. D. Urbina, A. T. Kleinschmidt, M. Finn, S. J. Edmunds, G. L. Esparza, and D. J. Lipomi. 2020. Exploring the limits of sensitivity for strain gauges of graphene and hexagonal boron nitride decorated with metallic nanoislands. Nanoscale, 12(20): 11209–11221. 10.1039/D0NR02270E
  • Seo, Y., S. Ko, H. Ha, N. Qaiser, M. Leem, S. Jo Yoo, J. Hyeon Jeong, K. Lee, and B. Hwang. 2022a. Stretchable carbonyl iron powder/polydimethylsiloxane composites for noise suppression in gigahertz bandwidth. Composites Science and Technology 218. doi:10.1016/j.compscitech.2021.109150.
  • Seo, Y., S. Ko, H. Ha, N. Qaiser, M. Leem, S. Jo Yoo, J. Hyeon Jeong, K. Lee, and B. Hwang. 2022b. Stretchable carbonyl iron powder/polydimethylsiloxane composites for noise suppression in gigahertz bandwidth. Composites Science and Technology 218:109150. doi:10.1016/j.compscitech.2021.109150.
  • Shukla, V. 2019. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Advances 1 (5):1640–71. doi:10.1039/c9na00108e.
  • Sista, K. S., S. Dwarapudi, D. Kumar, G. Ranjan Sinha, and A. P. Moon. 2021.Carbonyl iron powders as absorption material for microwave interference shielding: A review. Abhijeet Premkumar %J Journal of Alloys Moon, and Compounds 853: 157251.doi: 10.1016/j.jallcom.2020.157251
  • Sushmita, K., A. V. Menon, S. Sharma, A. C. Abhyankar, G. Madras, and S. Bose. 2019. Mechanistic insight into the nature of dopants in graphene derivatives influencing electromagnetic interference shielding properties in hybrid polymer nanocomposites. The Journal of Physical Chemistry C 123 (4):2579–90. doi:10.1021/acs.jpcc.8b10999.
  • Wang, G., X. Liao, F. Zou, P. Song, W. Tang, J. Yang, and G. Li. 2021. “Flexible TPU/MWCNTs/BN composites for frequency-selective electromagnetic shielding and enhanced thermal conductivity.” Composites Communications 28. doi: 10.1016/j.coco.2021.100953.
  • Wang, Z., W. Yang, R. Liu, X. Zhang, H. Nie, and Y. Liu. 2021. Highly stretchable graphene/polydimethylsiloxane composite lattices with tailored structure for strain-tolerant EMI shielding performance. Composites Science and Technology 206:108652. doi:10.1016/j.compscitech.2021.108652.
  • Wan, Y.-J., P.-L. Zhu, Y. Shu-Hui, R. Sun, C.-P. Wong, and W.-H. Liao. 2017. Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 115:629–39. doi:10.1016/j.carbon.2017.01.054.
  • Xin, W., M. Ming-Guo, and F. Chen. 2021. Silicone-coated MXene/Cellulose nanofiber aerogel films with photothermal and joule heating performances for electromagnetic interference shielding. ACS Applied Nano Materials 4 (7):7234–43. doi:10.1021/acsanm.1c01185.
  • Yang, X., S. Fan, Y. Li, Y. Guo, Y. Li, K. Ruan, S. Zhang, J. Zhang, J. Kong, and J. Gu. 2020. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Composites Part A: Applied Science and Manufacturing 128. doi:10.1016/j.compositesa.2019.105670.
  • Yin, C., Y. Cao, J. Fan, L. Bai, F. Ding, and F. Yuan. 2013. Synthesis of hollow carbonyl iron microspheres via pitting corrosion method and their microwave absorption properties. Applied Surface Science 270:432–38. doi:10.1016/j.apsusc.2013.01.044.
  • Ying-Ming, L., C. Deng, Z.-Y. Zhao, L.-X. Han, P. Lu, and Y.-Z. Wang. 2020. Carbon fiber-based polymer composite via ceramization toward excellent electromagnetic interference shielding performance and high temperature resistance. Composites Part A: Applied Science and Manufacturing 131. doi:10.1016/j.compositesa.2020.105769.
  • Yuan, W., J. Yang, F. Yin, Y. Li, and Y. Yuan. 2020. Flexible and stretchable MXene/Polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process. Composites Communications 19:90–98. doi:10.1016/j.coco.2020.03.003.
  • Zhang, Y., M. Li, X. Han, Z. Fan, H. Zhang, and Q. Li. 2021. High-strength and highly electrically conductive hydrogels for wearable strain sensor. Chemical Physics Letters 769. doi:10.1016/j.cplett.2021.138437.