2,130
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Giant Reed (Arundo donax L.) Fiber Extraction and Characterization for Its Use in Polymer Composites

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abidi, N., and M. Manike. 2018. X-ray diffraction and FTIR investigations of cellulose deposition during cotton fiber development. Textile Research Journal 88 (7):719–14. doi:10.1177/0040517516688634.
  • Accardi, D. S., P. Russo, R. Lauri, B. Pietrangeli, and L. Di Palma. 2015. From soil remediation to biofuel: Process simulation of bioethanol production from Arundo donax. Chemical Engineering Transactions 43:2167–72. doi:10.3303/CET1543362.
  • Ahmed, M. J. 2016. Potential of Arundo donax L. stems as renewable precursors for activated carbons and utilization for wastewater treatments: Review. Journal of the Taiwan Institute of Chemical Engineers 63 (June):336–43. doi:10.1016/j.jtice.2016.03.030.
  • American National Standard Institute. 1977. “ANSI/ASTM, 1977b. standard test methods for alpha-cellulose in wood D 1103-60.” Washington DC, USA.
  • Andersons, J., E. Sparniņš, R. Joffe, and L. Wallström. 2005. Strength distribution of elementary flax fibres. Composites Science and Technology 65 (3–4):693–702. doi:10.1016/J.COMPSCITECH.2004.10.001.
  • Antonetti, C., E. Bonari, D. Licursi, N. Nassio Di Nasso, and A. M. Raspolli Galletti. 2015. Hydrothermal conversion of giant reed to furfural and levulinic acid: Optimization of the process under microwave irradiation and investigation of distinctive agronomic parameters. Molecules 20 (12):21232–353. doi:10.3390/molecules201219760.
  • Aymerich, F. R., M. A. E. Selma, I. H. García, V. M. Z. Pérez, P. F. Celdrán, R. V. López, J. M. Fernández, and J. M. Ródenas. 2012. “Seguimiento y Análisis de Las Actuaciones Para El Control Experimental de La Caña Común (Arundo Donax) En La Región de Murcia.” Murcia.
  • Barreto, A. C. H., M. A. Esmeraldo, D. S. Rosa, P. B. A. Fechine, and S. E. Mazzetto. 2010. Cardanol biocomposites reinforced with jute fiber: Microstructure, biodegradability, and mechanical properties. Polymer Composites 31 (11):1928–37. doi:10.1002/PC.20990.
  • Bessa, W., D. Trache, M. Derradji, H. Ambar, M. Benziane, and B. Guedouar. 2021, July. Effect of different chemical treatments and loadings of Arundo donax L. fibers on the dynamic mechanical, thermal, and morphological properties of bisphenol a aniline based polybenzoxazine composites. ( pc.26215) Polymer Composites 42 (10):5199–208. doi: https://doi.org/10.1002/pc.26215.
  • Bessa, W., D. Trache, M. Derradji, H. Ambar, A. F. Tarchoun, M. Benziane, and B. Guedouar. 2020. Characterization of raw and treated Arundo donax L. cellulosic fibers and their effect on the curing kinetics of bisphenol a-based benzoxazine. International Journal of Biological Macromolecules 164 (December):2931–43. doi:10.1016/j.ijbiomac.2020.08.179.
  • Bledzki, A. K., A. A. Mamun, and J. Volk. 2010. Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Composites Science and Technology 70 (5):840–46. doi:10.1016/J.COMPSCITECH.2010.01.022.
  • Browning, B. L. 1967. Methods of wood chemistry. volumes I & II.methods of wood chemistry. volumes I & II. New York: Interscience Publishers. Vol. 102. http://www.biblio.com/book/methods-wood-chemistry-volume-1-browning/d/710364055.
  • Charca, S., C. Tenazoa, and H. S. Junior. 2021. Chemical composition of natural fibers using the measured true density. Case study: Ichu fibers. Journal of Natural Fibers 1–6. doi:10.1080/15440478.2021.1952143.
  • Chikouche, M. D. L., A. Merrouche, A. Azizi, M. Rokbi, and S. Walter. 2015. Influence of alkali treatment on the mechanical properties of new cane fibre/polyester composites. Journal of Reinforced Plastics and Composites 34 (16):1329–39. doi:10.1177/0731684415591093.
  • Csurhes, S. 2016. “Invasive weed risk assessment: Giant reed Arundo Donax.” https://www.daf.qld.gov.au/__data/assets/pdf_file/0006/59973/IPA-Giant-Reed-Risk-Assessment.pdf.
  • Davide, B., A. Salanti, M. Orlandi, D. S. Ali, and L. Zoia. 2016. Biorefinery process for the simultaneous recovery of lignin, hemicelluloses, cellulose nanocrystals and silica from rice husk and Arundo donax. Industrial Crops and Products 86 (August):31–39. doi:10.1016/j.indcrop.2016.03.029.
  • Di Fidio, N., A. M. Raspolli Galletti, S. Fulignati, D. Licursi, F. Liuzzi, I. De Bari, and C. Antonetti. 2020. Multi-step exploitation of raw Arundo donax L. for the selective synthesis of second-generation sugars by chemical and biological route. Catalysts 10 (1):79. doi:10.3390/catal10010079.
  • Fernando, A. L., B. Barbosa, J. Costa, and E. G. Papazoglou. 2016 January. Giant reed (Arundo donax L.). Bioremediation and Bioeconomy 77–95. doi:10.1016/B978-0-12-802830-8.00004-6.
  • Ferrández-García, C. E., J. Andreu-Rodríguez, M. T. Ferrández-García, M. Ferrández-Villena, and T. García-Ortuño. 2012. Panels made from giant reed bonded with non-modified starches. BioResources 7 (4):5904–16. doi:10.15376/biores.7.4.5904-5916.
  • Ferrandez-Garcia, M. T., C. Eugenia Ferrandez-Garcia, T. Garcia-Ortuño, A. Ferrandez-Garcia, and M. Ferrandez-Villena. 2019. Experimental evaluation of a new giant reed (Arundo donax L.) composite using citric acid as a natural binder. Agronomy 9 (12):882. doi:10.3390/agronomy9120882.
  • Ferrández-García, M. T., A. Ferrández-García, T. García-Ortuño, C. E. Ferrández-García, and M. Ferrández-Villena. 2020. Assessment of the physical, mechanical and acoustic properties of Arundo donax L. biomass in low pressure and temperature particleboards. Polymers 12 (6):1361. doi:10.3390/POLYM12061361.
  • Ferrández Villena, M., C. E. F. Garcia, T. García Ortuño, A. Ferrández García, and M. T. Ferrández García. 2020. The influence of processing and particle size on binderless particleboards made from Arundo donax L. rhizome. Polymers 12 (3):696. doi:10.3390/polym12030696.
  • Fiore, V., L. Botta, R. Scaffaro, A. Valenza, and A. Pirrotta. 2014. PLA based biocomposites reinforced with Arundo donax fillers. Composites Science and Technology 105 (December):110–17. doi:10.1016/j.compscitech.2014.10.005.
  • Fiore, V., T. Scalici, and A. Valenza. 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydrate Polymers 106 (1):77–83. doi:10.1016/j.carbpol.2014.02.016.
  • Fiore, V., A. Valenza, and G. Di Bella. 2011. Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures. Composites Science and Technology 71 (8):1138–44. doi:10.1016/J.COMPSCITECH.2011.04.003.
  • Francesco, B., A. M. Gabarron, J. A. F. Yepes, and J. J. P. Pérez. 2019. Innovative use of giant reed and cork residues for panels of buildings in Mediterranean area. Resources, Conservation and Recycling 140 (January):259–66. doi:10.1016/j.resconrec.2018.10.005.
  • Galletti, A. M. R., C. Antonetti, E. Ribechini, M. P. Colombini, N. N. O Di Nasso, and E. Bonari. 2013. From giant reed to levulinic acid and gamma-valerolactone: A high yield catalytic route to valeric biofuels. Applied Energy 102 (February):157–62. doi:10.1016/j.apenergy.2012.05.061.
  • García-Ortuño, T., J. Andréu-Rodríguez, M. T. Ferrández-García, M. Ferrández-Villena, and C. E. Ferrández-García. 2011. Evaluation of the physical and mechanical properties of particleboard made from giant reed (Arundo donax L.). BioResources 6 (1):477–86. doi:10.15376/biores.6.1.477-486.
  • Ismail, Z. Z., and A. J. Jaeel. 2014. A novel use of undesirable wild giant reed biomass to replace aggregate in concrete. Construction and Building Materials 67 (September):68–73. doi:10.1016/j.conbuildmat.2013.11.064.
  • Javier, A.-R., E. Medina, M. T. Ferrandez-Garcia, M. Ferrandez-Villena, C. E. Ferrandez-Garcia, C. Paredes, M. A. Bustamante, and J. Moreno-Caselles. 2013. Agricultural and industrial valorization of Arundo donax L. Communications in Soil Science and Plant Analysis 44 (1–4):598–609. doi:10.1080/00103624.2013.745363.
  • Jensen, E. F., M. D. Casler, K. Farrar, J. M. Finnan, R. Lord, C. Palmborg, J. Valentine, and I. S. Donnison. 2018. Giant reed: From production to end use. In Perennial Grasses for Bioenergy and Bioproducts, ed. E. Alexopoulou, 107–50. London: Academic Press Inc. Elsevier.
  • Jiménez Auzmendi, E. 2014. Plantas Invasoras, ¿ Batalla Perdida? ¿ O No ? Investigación, Gestión Y Técnica Forestal, En La Región de La Macaronesia 135–55. Universidad de La Laguna. Editor: Juan Carlos Santamarta Cerezal. 2014. 978-84-617-3391-0. Madrid: Colegio de Ingenieros de Montes. Accessed at: https://mdc.ulpgc.es/utils/getfile/collection/MDC/id/177834/filename/218410.pdf
  • Jiménez-Ruiz, J., L. Hardion, J. P. Del Monte, B. Vila, and M. I. Santín-Montanyá. 2021. Monographs on invasive plants in Europe N° 4: Arundo donax L. Botany Letters 168 (1):131–51. doi:10.1080/23818107.2020.1864470.
  • Khan, A., R. Vijay, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, F. Verpoort, K. A. Alamry, and A. M. Asiri. 2020. Characterization of natural fibers from Cortaderia selloana grass (pampas) as reinforcement material for the production of the composites. Journal of Natural Fibers. doi:10.1080/15440478.2019.1709110.
  • Lian, C., R. Liu, C. Xiufang, S. Zhang, J. Luo, S. Yang, X. Liu, and B. Fei. 2019. Characterization of the pits in parenchyma cells of the moso bamboo [Phyllostachys edulis (Carr.) J. Houz.] Culm. Holzforschung 73 (7):629–36. doi:10.1515/HF-2018-0236.
  • Liu, Y., D. Thibodeaux, G. Gamble, P. Bauer, and D. VanDerveer. 2012. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity. Applied Spectroscopy 66 (8):983–86. doi:10.1366/12-06611.
  • Martín, S., J. A. G. Carolina, and J. Barroso. 2019. Control of volunteer giant reed (Arundo donax). Invasive Plant Science and Management 12 (1):43–50. doi:10.1017/inp.2018.36.
  • Martínez-Sanz, M., E. Erboz, C. Fontes, and A. López-Rubio. 2018. Valorization of Arundo donax for the production of high performance lignocellulosic films. Carbohydrate Polymers 199 (November):276–85. doi:10.1016/j.carbpol.2018.07.029.
  • Odesanya, K. O., R. Ahmad, M. Jawaid, S. Bingol, G. O. Adebayo, and Y. H. Wong. 2021. Natural fibre-reinforced composite for ballistic applications: A review. Journal of Polymers and the Environment 29 (12):3795–812. doi:10.1007/s10924-021-02169-4.
  • Ortega, Z., F. Romero, R. Paz, L. Suárez, A. N. Benítez, and M. D. Marrero. 2021. Valorization of invasive plants from macaronesia as filler materials in the production of natural fiber composites by rotational molding. Polymers 13 (13):2220. doi:10.3390/polym13132220.
  • Oudiani, A. E., S. Msahli, and F. Sakli. 2017. In-depth study of agave fiber structure using Fourier transform infrared spectroscopy. Carbohydrate Polymers 164 (May):242–48. doi:10.1016/J.CARBPOL.2017.01.091.
  • Piperopoulos, E., A. Khaskhoussi, V. Fiore, and L. Calabrese. 2021. Surface modified Arundo donax natural fibers for oil spill recovery. Journal of Natural Fibers 1–16. doi:https://doi.org/10.1080/15440478.2021.1961343.
  • Proietti, S., S. Moscatello, M. Fagnano, N. Fiorentino, A. Impagliazzo, and A. Battistelli. 2017. Chemical composition and yield of rhizome biomass of Arundo donax L. grown for biorefinery in the Mediterranean environment. Biomass & Bioenergy 107 (December):191–97. doi:10.1016/j.biombioe.2017.10.003.
  • Sang Youn, O., D. I. Yoo, Y. Shin, H. C. Kim, H. Y. Kim, Y. S. Chung, W. H. Park, and J. H. Youk. 2005. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research 340 (15):2376–91. doi:10.1016/J.CARRES.2005.08.007.
  • Scalici, T., V. Fiore, and A. Valenza. 2016. Effect of plasma treatment on the properties of Arundo donax L. leaf fibres and its bio-based epoxy composites: A preliminary study. Composites Part B: Engineering 94 (June):167–75. doi:10.1016/j.compositesb.2016.03.053.
  • Shatalov, A. A., and H. Pereira. 2005. Kinetics of organosolv delignification of fibre crop Arundo donax L. Industrial Crops and Products 21 (2):203–10. doi:10.1016/j.indcrop.2004.04.010.
  • Shatalov, A. A., and H. Pereira. 2013. High-grade sulfur-free cellulose fibers by pre-hydrolysis and ethanol-alkali delignification of giant reed (Arundo donax L.) stems. Industrial Crops and Products 43 (1):623–30. doi:10.1016/j.indcrop.2012.08.003.
  • Sluiter, A., R. Ruiz, C. Scarlata, J. Sluiter, and D. And Templeton NREL/TP-510-42619 - Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510-42619. January 2008. Accessible on: https://www.nrel.gov/docs/gen/fy08/42619.pdf
  • Suárez, L., J. Castellano, F. Romero, M. D. Marrero, A. N. Benítez, and Z. Ortega. 2021. Environmental hazards of giant reed (Arundo donax l.) in the Macaronesia region and its characterisation as a potential source for the production of natural fibre composites. Polymers 13 (13):2101. doi:10.3390/polym13132101.
  • Tarek, A., N. Elhawat, É. Domokos-Szabolcsy, J. Kátai, L. Márton, M. Czakó, H. El-Ramady, and M. G. Fári. 2015. Giant reed (Arundo donax L.): A green technology for clean environment. Phytoremediation: Management of Environmental Contaminants 1:1–20. doi:10.1007/978-3-319-10395-2_1.
  • Wang, C., S. Bai, X. Yue, B. Long, and L. P. Choo-Smith. 2016. Relationship between chemical composition, crystallinity, orientation and tensile strength of kenaf fiber. Fibers and Polymers 2016 (11):1757–64. doi:10.1007/S12221-016-6703-5.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86 (12–13):1781–88. doi:10.1016/j.fuel.2006.12.013.