924
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Valorization of Oil Palm Trunk Biomass for Lignocellulose/Carbon Nanoparticles and Its Nanomaterials Characterization Potential for Water Purification

ORCID Icon & ORCID Icon

References

  • Ahmed, Y. M., A. Al-Mamun, A. T. Jameel, M. F. R. AlKhatib, M. K. Amosa, and M. A. Alsaadi. 2016.Synthesis and characterization of carbon nanofibers grown on powdered activated carbon. Journal of Nanotechnology 2016: 1–15.doi: 10.1155/2016/1538602
  • Ariyani, D., N. Cahaya, and D.R. Mujiyanti. 2018. Pengaruh pH dan waktu kontak terhadap adsorpsi logam Zn(II) pada komposit arang eceng gondok termodifikasi kitosan-epiklorohidrin. Jurnal Kimia VALENSI: Jurnal Penelitian Dan Pengembangan Ilmu Kimia 4 (2):85–92. doi:10.15408/jkv.v4i2.6521.
  • Asni, N., M.A. Saadilah, and D. Saleh. 2014. Optimalisasi sintesis kitosan dari cangkang kepiting sebagai adsorben logam berat Pb(II). Spektra: Jurnal Fisika Dan Aplikasinya 15 (1):18–25.
  • Bankole, M. T., A. S. Abdulkareem, I. A. Mohammed, S. S. Ochigbo, J. O. Tijani, O. K. Abubakre, and W. D. Roos. 2019. Selected heavy metals removal from electroplating wastewater by purified and polyhydroxylbutyrate functionalized carbon nanotubes adsorbents. Scientific Reports 9 (4475):1–19. doi:10.1038/s41598-018-37899-4.
  • Daochalermwong, A., N. Chanka, K. Songsrirote, P. Dittanet, C. Niamnuy, and A. Seubsai. 2020. Removal of heavy metal ions using modified celluloses prepared from pineapple leaf fiber. ACS Omega 5:5285–96. doi:10.1021/acsomega.9b04326.
  • Deng, L., M. Geng, M. Zhu, W. Zhou, A. Langdon, H. Wu, Y. Yu, Z. Zhu, and Y. Wang. 2012. Effect of chemical and biological degumming on the adsorption of heavy metal by cellulose xanthogenates prepared from Eichhornia crassipes. Bioresources Technology 107:41–45. doi:10.1016/j.biortech.2011.12.023.
  • Ding, Q., J. Zeng, B. Wang, D. Tang, K. Chen, and W. Gao. 2018. Effect of nanocellulose fiber hornification on water fraction characteristics and hydroxyl accessibility during dehydration. Carbohydrate Polymers 207:44–51. doi:10.1016/j.carbpol.2018.11.075.
  • Farghali, A. A., H. A. A. Tawab, S. A. A. Moaty, and R. Khaled. 2017. Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. Journal of Nanostructure in Chemistry 7:101–11. doi:10.1007/s40097-017-0227-4.
  • Fung, W. Y., K. Yuen, and M. T. Liong. 2010. Characterization of fibrous residues from agrowastes and the production of nanofibers. Journal of Agricultural and Food Chemistry 58 (13):8077–84. doi:10.1021/jf1012506.
  • Gangupomu, R. H., M. L. Sattler, and D. Ramirez. 2016. Comparative study of carbon nanotubes and granular activated carbon: Physicochemical properties and adsorption capacities. Journal of Hazardous Materials 302:362–74. doi:10.1016/j.jhazmat.2015.09.002.
  • Gueu, S., B. Yao, K. Adouby, and G. Ado. 2006. Heavy metals removal in aqueous solution by activated carbons prepared from coconut shell and seed shell of the palm tree. Journal of Applied Sciences 6 (13):2789–93. doi:10.3923/jas.2006.2789.2793.
  • Hashim, Z., S. S. A. M. Zaki, and I. I. Muhamad. 2017. Quality assessment of fried palm oils using Fourier transform infrared spectroscopy and multivariate approach. Chemical Engineering Transaction 56:829–34. doi:10.3303/CET1756139.
  • Hosseini, S. H., S. Rastgar, and H. Rezaei. 2018. Evaluation of lignocellulose nanofiber adsorbent efficacy in Cu(II) removal from aqueous solutions. Journal of Environment and Water Engineering 4 (2):115–22.
  • Islam, M. T., M. M. Alam, and M. Zoccola. 2013. Review on modification of nanocellulose for application in composites. International Journal of Innovative Research in Science, Engineering, and Technology 2 (10):5444–51.
  • Karimi, S. 2017. Thermoplastic cellulose nanocomposites in handbook of nanocellulose and cellulose nanocomposites, 2 volume set. ed. H. Kargarzadeh, I. Ahmad, S. Thomas, and A. Dufresne, Germany: Wiley.
  • Koh, B., and W. Cheng. 2014. Mechanisms of carbon nanotube aggregation and the reversion of carbon nanotube aggregates in aqueous medium. Langmuir 30 (36):10899–909. doi:10.1021/la5014279.
  • Kosa, S. A., G. Al-Zhrani, and M. A. Salam. 2012. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chemical Engineering Journal 181–182:159–68. doi:10.1016/j.cej.2011.11.044.
  • Lani, N. S., N. Ngadi, A. Johari, and M. Jusoh. 2014. Isolation, characterization, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocompsite. Journal of Nanomaterials 2014:1–9. doi:10.1155/2014/702538.
  • Liang, H., and X. Hu. 2016. A quick review of the applications of nano crystalline cellulose in wastewater treatment. Journal of Bioresources and Bioproducts 1 (4):199–204. doi:10.21967/JBB.V1I4.65.
  • Li, M., S. A. Messele, Y. Boluk, and M. G. El-Din. 2019. Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: Performance and mechanisms. Carbohydrate Polymers 221:231–41. doi:10.1016/j.carbpol.2019.05.078.
  • Luo, X., and X. Wang. 2017. Preparation and characterization of nanocellulose fibers from NaOH/urea pretreatment of oil palm fibers. BioResources 12 (3):5826–37. doi:10.15376/biores.12.3.5826-5837.
  • Madivoli, E. S., P. G. Kareru, A. N. Gachanja, S. Mugo, M. K. Murigi, P. K. Kairigo, C. Kipyegon, J. K. Mutembei, and F. K. Njonge. 2016. Adsorption of selected heavy metals on modified nano cellulose. International Research Journal of Pure and Applied Chemistry 12 (3):1–9. doi:10.9734/IRJPAC/2016/28548.
  • Mamun, A. A., Y. M. Ahmed, S. A. Muyibi, M. F. R. Al-Khatib, A. T. Jameel, and M. A. Al Saadi. 2016. Synthesis of carbon nanofibers on impregnated powdered activated carbon as cheap substrate. Arabian Journal of Chemistry 9 (4):532–36. doi:10.1016/j.arabjc.2013.09.001.
  • Mohanasrinivasan, V., M. Mishra, J. S. Paliwal, S. K. Singh, E. Selvarajan, V. Suganthi, and C. S. Devi. 2014. Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. 3 Biotech 4 (2):167–75. doi:10.1007/s13205-013-0140-6.
  • Nasir, S., M. Hussein, N. Yusof, and Z. Zainal. 2017. Oil palm waste-based precursors as a renewable and economical carbon sources for the preparation of reduced graphene oxide from graphene oxide. Nanomaterials 7 (7):182. doi:10.3390/nano7070182.
  • Osman, A. I., J. Blewitt, J. K. Abu-Dahrieh, C. Farrell, A. H. Al-Muhtaseb, J. Harrison, and D. W. Rooney. 2019. Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environmental Science and Pollution Research 26:37228–41. doi:10.1007/s11356-019-06594-w.
  • Parveen, S., S. Rana, and R. Fangueiro. 2013. A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. Journal of Nanomaterials 2013:1–19. doi:10.1155/2013/710175.
  • Puspitasari, F. H., N. Nurdiansyah, U. Salamah, N. R. Sari, A. Maddu, and A. Solikhin. 2020. Potential of chitosan hydrogel based activated carbon nanoparticles and non-activated carbon nanoparticles for water purification. Fibers and Polymers 21:701–08. doi:10.1007/s12221-020-9746-6.
  • Ramos-Vargas, S., R. Huirache-Acuña, J. G. Rutiaga-Quiñones, and R. Cortés-Martínez. 2020. Effective lead removal from aqueous solutions using cellulose nanofibers obtained from water hyacinth. Water Supply 20 (7):2715–36. doi:10.2166/ws.2020.173.
  • Rani, K., T. Gomathi, K. Vijayalakshmi, M. Saranya, and P. N. Sudha. 2019. Banana fiber cellulose nano crystals grafted with butyl acrylate for heavy metal lead (II) removal K. International Journal of Biological Macromolecules 131:461–72. doi:10.1016/j.ijbiomac.2019.03.064.
  • Rosli, N. S., S. Harun, J. M. Jahim, and R. Othaman. 2017. Chemical and physical characterization of oil palm empty fruit bunch. Malaysian Journal of Analytical Sciences 21 (1):188–96. doi:10.17576/mjas-2017-2101-22.
  • Sirviö, J. A., and V. Miikka. 2019. Highly transparent nanocomposites based on poly(vinyl alcohol) and sulfated UV-absorbing wood nanofibers. Biomacromolecules 20 (6):2413–20. doi:10.1021/acs.biomac.9b00427.
  • Solic, M., S. Meletic, M. K. Isakovski, J. Nikic, M. Waston, Z. Konya, and J. Trickovic. 2020. Comparing the adsorption performance of multiwalled carbon nanotubes oxidized by varying degrees for removal of low levels of copper, nickel and chromium(vi) from aqueous solutions. Water 12 (723):1–18. doi:10.3390/w12030723.
  • Solikhin, A., Y. S. Hadi, M. Y. Massijaya, and S. Nikmatin. 2019. Production of microfibrillated cellulose by novel continuous steam explosion assisted chemo-mechanical methods and its characterizations. Waste and Biomass Valorization 10 (2):275–86. doi:10.1007/s12649-017-0066-z.
  • Voisin, H., L. Bergström, P. Liu, and A. Mathew. 2017. Nanocellulose-based materials for water purification. Nanomaterials 7 (3):1–18. doi:10.3390/nano7030057.
  • Wang, D., and L. Chen. 2007. Temperature and pH-responsive singlewalled carbon nanotube dispersions. Nano Letters 7 (6):1480–84. doi:10.1021/nl070172v.
  • Wang, H., A. Zhou, F. Peng, H. Yu, and J. Yang. 2007. Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). Journal of Colloid and Interface Science 316 (2):277–83. doi:10.1016/j.jcis.2007.07.075.
  • Xie, R., Y. Jin, W. Jiang, and W. Jiang. 2017. The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon. Water Science and Technology 76 (11):3022–34. doi:10.2166/wst.2017.471.
  • Yang, S., S. Fu, H. Liu, Y. Zhou, and X. Li. 2010. Hydrogel beads based on carboxymethyl cellulose for removal heavy metal ions. Journal of Applied Polymer Science 119 (2):1204–10. doi:10.1002/app.32822.
  • Yang, J., B. Hou, J. Wang, B. Tian, J. Bi, N. Wang, X. Li, and X. Huang. 2019. Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 9 (424):1–37. doi:10.3390/nano9030424.
  • Yang, K., Z. Yi, Q. Jing, and D. Lin. 2014. Dispersion and aggregation of single-walled carbon nanotubes in aqueous solutions of anionic surfactants. Journal of Zhejiang University-Science A (Applied Physics & Engineering) 15 (8):624–33.
  • Zubaidah, S., A. P. Putri Hartoyo, J. K. Sihombing, E. N. Herliyana, S. Darmawan, N. R. Sari, M. N. I. Prabowo, I. Hermawan, I. Maulida, and A. Solikhin. 2021. Oil palm empty fruit bunch valorization for activated and non-activated carbon nanoparticles and its heavy-metal-removal efficiency. Water Science and Technology 83 (11):2652–68. doi:10.2166/wst.2021.166.