915
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Coloring of Woolen Fabrics with Natural Resources and Investigating the Color Perceptions of Children on These Fabrics

, & ORCID Icon

References

  • Adeel, S., H. Noman, F. Batool, N. Amin, T. Ahmad, S. Arif, and M. Hussaan. 2021a. Environmental friendly exploration of cinnamon bark (Cinnamomum verum) based yellow natural dye for green coloration of bio-mordanted wool fabric. Environmental Progress & Sustainable Energy 41 (3):1–12. doi:10.1002/ep.13794.
  • Adeel, S., M. Salman, M. Usama, F. Rehman, T. Ahmad, and N. Amin. 2021b. Sustainable isolation and application of rose petals based anthocyanin natural dye for coloration of bio-mordanted wool fabric. Journal of Natural Fibers 1–15. doi:10.1080/15440478.2021.1904480.
  • Agarwal, K. 2009. Perception management: The management tactics. New Delhi, India: Global India Publications.
  • Andra, S., S. K. Balu, J. Jeevanandam, and M. Muthalagu. 2021. Emerging nanomaterials for antibacterial textile fabrication. Naunyn-Schmiedeberg’s Archives of Pharmacology 394 (7):1355–82. doi:10.1007/s00210-021-02064-8.
  • Arifeen, W., F. Rehman, S. Adeel, M. Zuber, M. N. Ahmad, and T. Ahmad. 2021. Environmental friendly extraction of walnut bark-based juglone natural colorant for dyeing studies of wool fabric. Environmental Science and Pollution Research 28 (36):49958–66. doi:10.1007/s11356-021-14277-8.
  • ASTM E2149-01. 2001. E2149-01 standard test method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditions. West Conshohocken, PA, USA: ASTM International. www.astm.org.
  • Bahtiyari, M. İ., and F. Yılmaz. 2018. Investigation of antibacterial properties of wool fabrics dyed with pine cones. Industria Textila 69 (5):369–74. doi:10.35530/IT.069.05.1516.
  • Belkhir, K., C. Pillon, A. Cayla, and C. Campagne. 2021. Antibacterial textile based on hydrolyzed milk casein. Materials 14 (2):1–14. doi:10.3390/ma14020251.
  • Brezoiu, A., M. Prundeanu, D. Berger, M. Deaconu, C. Matei, O. Oprea, E. Vasile, T. Negreanu-Pirjol, D. Muntean, and C. Danciu. 2020. Properties of salvia officinalis L. and thymus serpyllum L. extracts free and embedded into mesopores of silica and titania nanomaterials. Nanomaterials 10 (5):1–21. doi:10.3390/nano10050820.
  • Delamare, A. P., I. T. Moschen-Pistorello, L. Artico, L. Atti-Serafini, and S. Echeverrigaray. 2007. Antibacterial activity of the essential oils of salvia officinalis L. and salvia triloba L. cultivated in South Brazil. Food Chemistry 100 (2):603–08. doi:10.1016/j.foodchem.2005.09.078.
  • Derman, G. S. 2021. Perceptıon management in the media. International Journal of Social and Economic Sciences 11 (1):64–78.
  • El-Hady, M. M. A., A. Farouk, S. E. Saeed, and S. Zaghloul. 2021. Antibacterial and UV protection properties of modified cotton fabric using a curcumin/TiO2 nanocomposite for medical textile applications. Polymers 13 (22):1–14. doi:10.3390/polym13224027.
  • Gao, D., X. Li, Y. Li, B. Lyu, J. Ren, and J. Ma. 2021. Long-acting antibacterial activity on the cotton fabric. Cellulose 28 (3):1221–40. doi:10.1007/s10570-020-03560-5.
  • Gulati, R., S. Sharma, and R. K. Sharma. 2021. Antimicrobial textile: Recent developments and functional perspective. Polymer Bulletin 79 (8):5747–71. doi:10.1007/s00289-021-03826-3.
  • Haji, A., M. Nasiriboroumand, and S. S. Qavamnia. 2018. The use of D-optimal design in optimization of wool dyeing with Juglans regia bark. Industria Textila 69 (2):104–10. doi:10.35530/IT.069.02.1509.
  • Haji, A., and M. Rahimi. 2020. RSM optimization of wool dyeing with berberis thunbergii dc leaves as a new source of natural dye. Journal of Natural Fibers 19 (8):1–13. doi:10.1080/15440478.2020.1821293.
  • ISO 105-C10. 2006. Textiles–tests for color fastness-part C10: Color fastness to washing with soap or soap and soda, test Condition: Test a (1). Geneva, Switzerland: International Organization for Standardization.
  • ISO 105-X12. 2002. Textiles-tests for color fastness, part X12: Color fastness to rubbing. Brussels: International Organisation for Standardisation.
  • Kamel, M. Y., and A. G. Hassabo. 2021. Anti-microbial finishing for natural textile fabrics. Journal of Textiles, Coloration and Polymer Science 18 (2):83–95. doi:10.21608/jtcps.2021.72333.1054.
  • Li, L., P. Yu, Y. Li, X. Wu, W. Li, and X. Cheng. 2021. A facile approach to fabricating antibacterial textile with high efficiency and compact process. Advanced Materials Interfaces 8 (21):1–10. doi:10.1002/admi.202101197.
  • Mendes, F. S. F., L. M. Garcia, T. S. Moraes, L. A. Casemiro, C. B. Alcantara, S. R. Ambrosio, R. C. S. Veneziani, M. L. D. Miranda, and C. H. G. Martins. 2020. Antibacterial activity of salvia officinalis L. against periodontopathogens: An in vitro study. Anaerobe 63:1–8. doi:10.1016/j.anaerobe.2020.102194.
  • Nikolic, M., J. Glamoclija, I. C. F. R. Ferreira, R. C. Calhelha, A. Fernandes, T. Markovic, D. Markovic, A. Giweli, and M. Sokovic. 2014. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Industrial Crops and Products 52:183–90. doi:10.1016/j.indcrop.2013.10.006.
  • Pavic, V., M. Jakovlijevic, M. Molnar, and S. Jokic. 2019. Extraction of carnosic acid and carnosol from sage (salvia officinalis L.) leaves by supercritical fluid extraction and their antioxidant and antibacterial activity. Plants 8 (16):1–14. doi:10.3390/plants8010016.
  • Sojic, B., V. Tomovic, S. Kocic-Tanackov, D. B. Kovacevic, P. Putnik, Z. Mrkonjic, S. Durovic, M. Jokanovic, M. Ivic, S. Skaljac, et al. 2020. Supercritical extracts of wild thyme (Thymus serpyllum L.) by-product as natural antioxidants in ground pork patties. LWT - Food Science and Technology 130:1–9. doi:10.1016/j.lwt.2020.109661.
  • Utma, S. 2018. Dijital Çağda Medyanın Psikolojik Gücü: Algı Yönetimi Perspektifinden Kuramsal Bir Değerlendirme. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 22 (3):2903–13.
  • Ye, Z., S. Li, S. Zhao, L. Deng, J. Zhang, and A. Dong. 2021. Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties. Chemical Engineering Journal 420 (2):1–14. doi:10.1016/j.cej.2020.127680.