1,031
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Influence of Chemical Treatments on the Physical and Mechanical Properties of Furcraea Foetida Fiber for Polymer Reinforcement Applications

, ORCID Icon, &

References

  • Abhishek, S. M., D. Doreswamy, S. Maddasani, M. Shettar, and R. Shetty. 2022. Processing, characterization of Furcraea foetida (FF) fiber and investigation of physical/mechanical properties of FF/epoxy composite. Polymers 14:1476. doi:10.3390/polym14071476.
  • Aina, V. O., M. M. Barau, O. A. Mamman, and A. Zakari. 2012. Extraction and characterization of pectin from peels of lemon (citrus limon), grapefruit (citrus paradisi) and sweet orange (citrus sinensis). British Journal of Pharmacology Toxicology 3:259–17.
  • Akhtar, M. N., A. B. Sulong, M. K. F. Radzi, N. F. Ismail, M. R. Raza, N. Muhamad, and M. A. Khan. 2016. Influence of alkaline treatment and fibre loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Progress in Natural Science: Materials International 26 (6):657–64. doi:10.1016/j.pnsc.2016.12.004.
  • Al-Maharma, A., and N. Al-Huniti. 2019. Critical review of the parameters affecting the effectiveness of moisture absorption treatments used for natural composites. Journal of Composite Science 3 (1):27. doi:10.3390/jcs3010027.
  • Alvarez, V. A., and A. Vazquez. 2006. Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Composites Part A: Applied Science and Manufacturing 37:1672–80. doi:10.1016/j.compositesa.2005.10.005.
  • Andrew, J. J., and H. N. Dhakal. 2022. Sustainable biobased composites for advanced applications: Recent trends and future opportunities–a critical review. Composites Part C: Open Access 7:100220. doi:10.1016/j.jcomc.2021.100220.
  • Anish, K., R. Vijay, D. S. Lenin, M. R. Sanjay, S. Suchart, J. Mohammad, A. A. Khalid, and M. A. Abdullah 2022 . Extraction and characterization of natural fibers from Citrullus lanatus climber. Journal of Natural Fibers 19 (2):621–29. doi:10.1080/15440478.2020.1758281.
  • Atiqah, A., M. Jawaid, M. R. Ishak, and S. M. Sapuan. 2018. Effect of alkali and silane treatments on mechanical and interfacial bonding strength of sugar palm fibers with thermoplastic polyurethane. Journal of Natural Fibers 15 (2):251–61. doi:10.1080/15440478.2017.1325427.
  • Bakri, M. K. B., E. Jayamani, S. Hamdan, M. E. Rahman, K. H. Soon, and A. Kakar. 2016. Fundamental study on the effect of alkaline treatment on natural fibres structures and behaviors. Journal of Engineering and Applied Science 11 (14):8759–63.
  • Belouadah Z, Ati A and Rokbi M. (2015). Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydrate Polymers, 134 429–437. 10.1016/j.carbpol.2015.08.024
  • Chen, Y., N. Su, K. Zhang, S. Zhu, Z. Zhu, W. Qin, Y. Yang, Y. Shi, S. Fan, Z. Wang, et al. 2018. Effect of fiber surface treatment on structure, moisture absorption and mechanical properties of luffa sponge fiber bundles. Industrial Crops and Products 123:341–52. doi:10.1016/j.indcrop.2018.06.079.
  • Chung, T. J., J. W. Park, H. J. Lee, H. J. Kwon, H. J. Kim, Y. K. Lee, and T. W. Tze. 2018. The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation. Applied Science 8:376. doi:10.3390/app8030376.
  • D’Almeida, J. R. M., R. C. M. P. Aquino, and S. N. Monteiro. 2006. Tensile mechanical properties, morphological aspects and chemical characterization of piassava (Attala funifera) fibers. Composites Part A: Applied Science and Manufacturing. 37:1473–1479.
  • da Silva, I. L. A., A. B. Bevitori, L. A. Rohen, M. F. Muylaert, B. F. de Oliveira, and S. N. Monteiro. 2016. Characterization by Fourier transform infrared (FTIR) analysis for natural jute fiber. Materials Science Forum 869:283–87. https://doi.org/10.4028/www.scientific.net/MSF.869.283.
  • Dasong, D., and M. Fan. 2010. Characteristic and performance of elementary hemp fibre. Materials Sciences and Applications 1 (06):336. doi:10.4236/msa.2010.16049.
  • Dhaliwal, J. S. 2019. Natural fibers: Applications. Generation, Development and Modifications of Natural Fibers 2:1–23.
  • Diharjo, K., P. Andy, A. Robbi, A. Gundhi, S. B. Herru, and F. Yohanes. 2017. Effect of acetylation treatment and soaking time to bending strength of sugar palm fiber composite. AIP Conference Proceedings 1788 (1):030049.
  • Dittenber, D. B., and H. V. S. GangaRao. 2012. Critical review of recent publications on use of natural composites in infrastructure. Composites Part A, Applied Science and Manufacturing 43 (8):1419–29. doi:10.1016/j.compositesa.2011.11.019.
  • Du, Y., N. Yan, and M. T. Kortschot. 2015. The use of ramie fibers as reinforcements in composites. Biofiber Reinforcements in Composite Materials 15:104–37.
  • Fidelis, M. E. A., T. V. C. Pereira, O. D. F. M. Gomes, F. S. de Andrade, and F. R. D. Toledo. 2013. The effect of fiber morphology on the tensile strength of natural fibers. Journal of Material Research and Technology 2 (2):149–57. doi:10.1016/j.jmrt.2013.02.003.
  • Gokul, K., and T. Rajasekaran. 2021. Recent progress on natural lignocellulosic fiber reinforced polymer composites: A review. Journal of Natural Fibers 21 (7):1–32. doi:10.1080/15440478.2021.1944425.
  • Goulart, S. A. S., T. A. Oliveira, A. Teixeira, and P. C. Mileo. 2011. Mechanical behaviour of polypropylene reinforced palm fibers composites. Procedia Engineering 10:2034–39. doi:10.1016/j.proeng.2011.04.337.
  • Gurunathan, T., S. Mohanty, and S. K. Nayak. 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A, Applied Science and Manufacturing 77:1–25. doi:10.1016/j.compositesa.2015.06.007.
  • Indran, S., R. E. Raj, and V. S. Sreenivasan. 2014. Characterization of new natural cellulosic fiber from cissus quadrangularis root. Carbohydrate Polymers 110:423–29. doi:10.1016/j.carbpol.2014.04.051.
  • Jabbar, J. I. M., B. M. Wiener, J. Kale, U. Ali, U. Ali, and S. Rwawiire. 2016. Rwawiire, S. nanocellulose coated woven jute/green epoxy composites: Characterization of mechanical and dynamic mechanical behavior. Composite Structures 161:340–49. doi:10.1016/j.compstruct.2016.11.062.
  • Joseph, P. V. J., S. K. Joseph, C. K. S. Thomas, G. Prasad, V. S. Groeninckx, G. Groeninckx, and M. Sarkissova. 2003. Composite part A: Applied. Science Manufacturing 34 (3):253–66. doi:10.1016/S1359-835X(02)00185-9.
  • Kabir, M. M., H. Wang, K. T. Lau, and F. Cardona. 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering 43 (7):2883–92. doi:10.1016/j.compositesb.2012.04.053.
  • Kenned, J. J., K. Sankaranarayanasamy, and K. S. Suresh. 2020. Chemical, biological, and nanoclay treatments for natural plant fiber-reinforced polymer composites: A review. Polymers and Polymer Composites 29 (7):1011–38. doi:10.1177/0967391120942419.
  • Khalit, M., H. Anuar, N. Shaffiar, I. Yaacob, and S. Sapuan. 2015. Matrix cracking in reinforced polymer nanocomposites: A review. Journal of Advanced Science 11:13–36.
  • Kommula, V. P., K. O. Reddy, M. Shukla, T. Marwala, and A. V. Rajulu. 2013. Physico-chemical, tensile, and thermal characterization of Napier grass (native African) fiber strands. International Journal of Polymer Analysis and Characterization 18 (4):303–14. doi:10.1080/1023666X.2013.784935.
  • Langhorst, A., M. Ravandi, D. Mielewski, and M. Banu. 2021. Technical agave fiber tensile performance: The effects of fiber heat-treatment. Industrial Crops and Products 171:113832. doi:10.1016/j.indcrop.2021.113832.
  • Lee, C. H., A. Khalina, and S. H. Lee. 2021. Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: A review. Polymers 13 (3):438. doi:10.3390/polym13030438.
  • Lee, C. H., A. Khalina, S. H. Lee, and L. A. Ming. 2020. Comprehensive review on bast fibre retting process for optimal performance in fibre-reinforced polymer composites. Advances in Material Science and Engineering 19 (12):27. doi:10.1155/2020/6074063.
  • Li, L. G. T., S. Panigrahi, and S. Panigrahi. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment 15 (1):25–33. doi:10.1007/s10924-006-0042-3.
  • Lithner, D., A. Larsson, and G. Dave. 2011. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. The Science of the Total Environment 409 (18):3309–24. doi:10.1016/j.scitotenv.2011.04.038.
  • Liu, X. Y., and G. C. Dai. 2007. Surface modification and micromechanical properties of jute fibre mat reinforced polypropylene composites. Express Polymer Letters 1 (5):299–307. doi:10.3144/expresspolymlett.2007.43.
  • Liu, Y., J. Xie, N. Wu, Y. Ma, C. Menon, and J. Tong. 2019. Characterization of natural cellulose fiber from corn stalk waste subjected to different surface treatments. Cellulose 26:4707–19. doi:10.1007/s10570-019-02429-6.
  • Madhu, P., M. R. Sanjay, S. Pradeep, K. S. Bhat, B. Yogesha, and S. Siengchin. 2019. Characterization of cellulosic fibre from phoenix pusilla leaves as potential reinforcement for polymeric composites. Journal of Materials Research and Technology 8 (3):2597–604. doi:10.1016/j.jmrt.2019.03.006.
  • Madhu, P., M. R. Sanjay, P. Senthamaraikannan, S. Pradeep, S. Siengchin, M. Jawaid, and M. Kathiresan. 2018. Effect of various chemical treatments of Prosopis juliflora fibers as composite reinforcement: Physicochemical, thermal, mechanical, and morphological properties. Journal of Natural Fibers 17 (6):833–44. doi:10.1080/15440478.2018.1534191.
  • Mahato, K., S. Goswami, and A. Ambarkar. 2014. Morphology and mechanical properties of sisal fibre/vinyl ester composites. Fibers and Polymers 15 (6):1310–20. doi:10.1007/s12221-014-1310-9.
  • Manalo, A. C., E. Wani, N. A. Zukarnain, W. Karunasena, and K. T. Lau. 2015. Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre–polyester composites. Composites Part B: Engineering 80:73–83. doi:10.1016/j.compositesb.2015.05.033.
  • Manimaran, P., P. Senthamaraikannan, M. R. Sanjay, M. K. Marichelvam, and M. Jawaid. 2018. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydrate Polymers 181:650–58. doi:10.1016/j.carbpol.2017.11.099.
  • Mishra, S., M. Misra, S. S. Tripathy, S. K. Nayak, and A. K. Mohanty. 2001. Potentiality of pineapple leaf fibre as reinforcement in palf-polyester composite: Surface modification and mechanical performance. Journal of Reinforced Plastics and Composites 20 (4):321–34. doi:10.1177/073168401772678779.
  • Musio, S., J. Mussig, and S. Amaducci. 2018. Optimizing hemp fiber production for high performance composite applications. Frontiers in Plant Science 9:1702. doi:10.3389/fpls.2018.01702.
  • Mwaikambo, L. Y., and M. P. Ansell. 2002. Chemical modification of hemp, sisal, jute, and kapok fibres by alkalization. Journal of Applied Polymer Science 84 (12):222–34. doi:10.1002/app.10460.
  • Mwaikambo, L. Y., N. Tucker, and A. J. Clark. 2007. Mechanical properties of hemp-fibre reinforced euphorbia composites. Macromolecular Materials and Engineering 292 (9):993–1000. doi:10.1002/mame.200700092.
  • Naidu, A. L., V. Jagadeesh, and M. R. Bahubalendruni. 2017. A review on chemical and physical properties of natural fiber reinforced composites. Journal of Advanced Research in Engineering and Technology 8 (1):56–68.
  • Najeeb, M., M. Sultan, Y. Andou, A. Shah, K. Eksiler, M. Jawaid, and A. Ariffin. 2020. Characterization of silane treated Malaysian Yankee pineapple AC6 leaf fiber (PALF) towards industrial applications. Journal of Material Research and Technology 9:3128–39. doi:10.1016/j.jmrt.2020.01.058.
  • Nouri, M., M. Tahlaiti, F. Grondin, and R. Belarbi. 2020. The influence of chemical and thermal treatments on the diss fiber hygroscopic behaviors. Journal of Natural Fibers 20 (12):1–14. doi:10.1080/15440478.2020.1848733.
  • Oladele, I. O., O. S. Michael, A. A. Adediran, O. P. Balogun, and F. O. Ajagbe. 2020. Acetylation treatment for the batch processing of natural fibers: Effects on constituents, tensile properties and surface morphology of selected plant stem fibers. Fibers 8 (12):73. doi:10.3390/fib8120073.
  • Omrani, E., P. L. Menezes, and P. K. Rohatgi. 2016. State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal 19 (2):717–36. doi:10.1016/j.jestch.2015.10.007.
  • Patel, U., R. Ray, A. Mohapatra, S. N. Das, and H. C. Das. 2020. Effect of different chemical treatments on surface morphology, thermal and tensile strength of bauhinia vahlii (BV) stem fibers. Journal of Natural Fibers 1 (19):1–12. doi:10.1080/15440478.2020.1739591.
  • Pouriman, M., A. R. Caparanga, M. Ebrahimi, and A. Dahresobh. 2017. Characterization of untreated and alkaline-treated salago fibers (genus wikstroemia spp.). Journal of Natural Fibers 15 (2):296–307. doi:10.1080/15440478.2017.1329105.
  • Pratiwi, H. 2017. The alkali treatment parameters using Taguchi model in order to obtain the optimum tensile strength of single kenaf fibre. Angkasa: Jurnal Ilmiah Bidang Teknologi 7 (2):49–58. doi:10.28989/angkasa.v7i2.148.
  • Rajeshkumar, G., V. Hariharan, G. L. Devnani, M. J. Prakash, M. R. Sanjay, S. Siengchin, N. A. Al‐dhabi, and K. Ponmurugan. 2021. Cellulose fiber from date palm petioles as potential reinforcement for polymer composites: Physicochemical and structural properties. Polymer Composites 42 (8):3943–53. doi:10.1002/pc.26106.
  • Rana, A. K., R. K. Basak, B. C. Mitra, M. Lawther, and A. N. Banerjee. 1997. Studies of acetylation of jute using simplified procedure and its characterization. Journal of Applied Polymer Science 64 (8):1517–23. doi:10.1002/(SICI)1097-4628(19970523)64:8<1517:AID-APP9>3.0.CO;2-K.
  • Rao, K. M. M., and K. M. Rao. 2007. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Composite Structures 77 (3):288–95. doi:10.1016/j.compstruct.2005.07.023.
  • Reddy, O., M. Shukla, U. Maheswari, and V. Rajulu. 2012. Mechanical and physical characterization of sodium hydroxide treated Borassus fruit fibers. Journal of Forestry Research 23 (4):667–74. doi:10.1007/s11676-012-0308-7.
  • Rhodes, C. J. 2018. Plastic pollution and potential solutions. Science Progress 101 (3):207–60. doi:10.3184/003685018X15294876706211.
  • Ruan, P., V. Raghavan, Y. Gariepy, and J. Du. 2015. Characterization of flax water retting of different durations in laboratory condition and evaluation of its fiber properties. BioResources 10 (2):3553–63. doi:10.15376/biores.10.2.3553-3563.
  • Ru, S., C. Zhao, S. Yang, and D. Liang. 2022. Effect of coir fiber surface treatment on interfacial properties of reinforced epoxy resin composite. Polymers 14 (17):3488. doi:10.3390/polym14173488.
  • Senthamaraikannan, P., S. S. Saravanakumar, V. P. Arthanarieswaran, and P. Sugumaran. 2016. Physico-Chemical properties of new cellulosic fibers from the bark of acacia planifrons. International Journal of Polymer Analysis and Characterization 21 (3):207–13. doi:10.1080/1023666X.2016.1133138.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Microstructural, physico-chemical and mechanical characterisation of sansevieria cylindrica fibres–an exploratory investigation. Materials & Design 32 (1):453–61. doi:10.1016/j.matdes.2010.06.004.
  • Sullins, T., S. Pillay, A. Komus, and H. Ning. 2017. Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering 114:15–22. doi:10.1016/j.compositesb.2017.02.001.
  • Syazwani, N. S., M. E. Efzan, C. K. Kok, and M. J. Nurhidayatullaili. 2022. Analysis on extracted jute cellulose nanofibers by Fourier transform infrared and X-Ray diffraction. Journal of Building Engineering 48:103744. doi:10.1016/j.jobe.2021.103744.
  • Teixeira, F. P., O. D. F. M. Gomes, and S. F. de Andrade. 2019. Degradation mechanisms of Curaua. Hemp, and Sisal Fibers Exposed to Elevated Temperatures BioResourses 14 (1):1494–511. doi:10.15376/biores.14.1.1494-1511.
  • Teklu, T. 2021. Characterization of physico-chemical, thermal, and mechanical properties of Ethiopian sisal fibers. Journal of Natural Fibers 21 (2):1–12.
  • Teklu T. (2022). Characterization of Physico-chemical, Thermal, and Mechanical Properties of Ethiopian Sisal Fibers. Journal of Natural Fibers, 19(10), 3825–3836. 10.1080/15440478.2020.1848730
  • Thomason, J. L., and J. L. Rudeiros-Fernandez. 2022. Characterization of interfacial strength in natural fibre–polyolefin composites at different temperatures. Composite Interfaces 29 (2):175–96. doi:10.1080/09276440.2021.1913901.
  • Totong, T. W., M. Wardiningsih, W. Al-Ayyuby, R. Wanti, and R. Rudy. 2021. Extraction and characterization of natural fiber from Furcraea Foetida leaves as an alternative material for textile applications. Journal of Natural Fibers 21 (4):1–12. doi:10.1080/15440478.2021.1904477.
  • Tuerxun, D., T. Pulingam, N. I. Nordin, Y. W. Chen, J. B. Kamaldin, N. B. M. Julkapli, H. V. Lee, B. F. Leo, and M. R. B. Johan. 2019. Synthesis, characterization and cytotoxicity studies of nanocrystalline cellulose from the production waste of rubber-wood and kenaf-bast fibers. European Polymer Journal 116:352–60. doi:10.1016/j.eurpolymj.2019.04.021.
  • Valasek, P., M. Muller, V. Sleger, V. Kolar, M. Hromasova, R. D’Amato, and A. Ruggiero. 2021. Influence of alkali treatment on the microstructure and mechanical properties of coir and abaca fibers. Materials 14 (10):2636. doi:10.3390/ma14102636.
  • Valasek, P., M. Muller, and S. Vladimir. 2017. Influence of plasma treatment on mechanical properties of cellulose-based fibres and their interfacial interaction in composite systems. BioResources 12 (3):5449–61. doi:10.15376/biores.12.3.5449-5461.
  • Verma, D., and K. L. Goh. 2021. Effect of mercerization/Alkali surface treatment of natural fibres and their utilization in polymer composites: Mechanical and morphological studies. Journal of Composite Science 5:175. doi:10.3390/jcs5070175.
  • Vidyashri, V., H. Lewis, P. Narayanasamy, G. T. Mahesha, and K. S. Bhat. 2019. Preparation of chemically treated sugarcane bagasse fiber reinforced epoxy composites and their characterization. Cogent Engineering 6 (1):1708644. doi:10.1080/23311916.2019.1708644.
  • Viel, Q., A. Esposito, J. M. Saiter, C. Santulli, and J. A. Turner. 2018. Interfacial characterization by pull-out test of bamboo fibers embedded in poly (lactic acid). Fibers 6 (1):1–7. doi:10.3390/fib6010007.
  • Vineeth, K. V., and K. S. Senthil. 2020. Characterization of various properties of chemically treated allium sativum fiber for brake pad application. Journal of Natural Fibers 2 (19):1–14. doi:10.1080/15440478.2020.1745130.
  • Wang, H., M. M. Kabir, and K. T. Lau. 2014. Hemp reinforced composites with alkalization and acetylation fibre treatments. Polymers and Polymer Compos 22 (3):247–52. doi:10.1177/096739111402200304.
  • Wan, O. W. N., M. Jawaid, A. Almasri, K. H. P. S. Abdul, S. Suhaili, and A. R. Mohamed. 2012. Cell wall morphology, chemical and thermal analysis of cultivated pineapple leaf fibres for industrial applications. Journal of Polymers and the Environment 20 (2):404–11. doi:10.1007/s10924-011-0380-7.
  • White, P. J., and P. Brown. 2010. Plant nutrition for sustainable development and global health. Annals of Botany 105 (7):1073–80. doi:10.1093/aob/mcq085.
  • Yasin, P., M. Venkataramana, and S. K. Kudari. 2020. Physio-mechanical properties and thermal analysis of Furcraea Foetida Mediopicta (ffm) fibers: Its potential application as reinforcement in making of composites. International Conference on Emerging Trends in Engineering (ICETE), Springer: Berlin, Germany 2:492–500.
  • Zaman, H. U., and R. A. Khan. 2021. Acetylation used for natural fiber/polymer composites. Journal of Thermoplastic Composite Materials 34 (1):3–23. doi:10.1177/0892705719838000.
  • Zeriouh, A., and L. Belbirl. 1995. Thermal decomposition of a Moroccan wood under a nitrogen atmosphere. Thermochimica Acta 258:243–48. doi:10.1016/0040-6031(94)02246-K.
  • Zhang, W., L. Li, W. Ou, L. Song, and Q. Zhang. 2018. Hydrophobic modification of hemp powders for their application in the stabilization of Pickering emulsions. Cellulose 25 (7):4107–20. doi:10.1007/s10570-018-1848-6.
  • Zhang, J. C., and H. Zhang. 2008. Structure and performance of China hemp fiber and process technology. Chinese Polymer Bulletin 12:44–51.
  • Zhang, H., and L. M. Zhang. 2009. Structure and properties of hemp fabric treated with chitosan and dyed with mixed epoxy‐modified silicone oil. Journal of Applied Polymer Science 114 (3):1377–83. doi:10.1002/app.30607.
  • Zhang, L., J. Zhong, and X. Ren. 2017. Natural fiber-based biocomposites. Green Biocomposites Springer International Publishing Springer International Publishing 16 (10):31–70.
  • Zouari, M., D. B. Devallance, and L. Marrot. 2022. Effect of biochar addition on mechanical properties, thermal stability, and water resistance of hemp-polylactic acid (PLA) composites. Materials 15 (6):2271. doi:10.3390/ma15062271.