1,236
Views
4
CrossRef citations to date
0
Altmetric
Research Article

BaTiO3 Nanoparticles Embedded Antibacterial Cotton Fabric with UV Protection Characteristics

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abualnaja, K. M., M. R. ElAassar, R. Y. Ghareeb, A. A. Ibrahim, and N. R. Abdelsalam. 2021. Development of photo-induced Ag0/TiO2 nanocomposite coating for photocatalysis, self-cleaning and antimicrobial polyester fabric. Journal of Materials Research and Technology 15:1513–14. doi:10.1016/j.jmrt.2021.08.127.
  • Acosta, M., N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti, and J. Rödel. 2017. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Applied Physics Reviews 4 (4):041305(1)–041305(49). doi:10.1063/1.4990046.
  • Belgacem, M. N., G. Czeremuszkin, S. Sapieha, and A. Gandini. 1995. Surface characterization of cellulose fibres by XPS and inverse gas chromatography. Cellulose 2:145–57. doi:10.1007/BF00813015.
  • Bhat, N., A. Netravali, A. Gore, M. Sathianarayanan, G. Arolkar, and R. Deshmukh. 2011. Surface modification of cotton fabrics using plasma technology. Textile Research Journal 81 (10):1014–26. doi:10.1177/0040517510397574.
  • Dev, V. R. G., J. Venugopal, S. Sudha, G. Deepika, and S. Ramakrishna. 2009. Dyeing and antimicrobial characteristics of chitosan treated wool fabrics with henna dye. Carbohydrate Polymers 75 (4):646–50. doi:10.1016/j.carbpol.2008.09.003.
  • Elhalawany, N., M. E. El-Naggar, A. Elsayed, A. R. Wassel, A. T. El-Aref, and M. A. Abd Elghaffar. 2020. Polyaniline/Zinc/Aluminum nanocomposites for multifunctional smart cotton fabrics. Materials Chemistry and Physics 249:123210. doi:10.1016/j.matchemphys.2020.123210.
  • ElShafei, A., and A. A. Okeil. 2011. ZnO/Carboxymethyl chitosan bionano-composite to impart antibacterial and UV protection for cotton fabric Carbohydrate Polymers. 83 (2):920–25. doi:10.1016/j.carbpol.2010.08.083.
  • Ferrara, F., E. Pambianchi, B. Woodby, N. Messano, J. P. Therrien, A. Pecorelli, R. Canella, and G. Valacchi. 2021. Evaluating the effect of ozone in UV induced skin damage. Toxicology Letters 338:40–50. doi:10.1016/j.toxlet.2020.11.023.
  • Fu, C., W. Ye, Z. Zhai, J. Zhang, P. Li, B. Xu, X. Li, F. Gao, J. Zhai, and D. Y. Wang. 2021. Self-cleaning cotton fabrics with good flame retardancy via one-pot approach. Polymer Degradation and Stability 192:109700. doi:10.1016/j.polymdegradstab.2021.109700.
  • Gao, D., X. Li, Y. Li, B. Lyu, J. Ren, and J. Ma. 2021. Long-acting antibacterial activity on the cotton fabric. Cellulose 28:1221–40. doi:10.1007/s10570-020-03560-5.
  • Gaspar, D., S. N. Fernandes, A. G. de Oliveira, J. G. Fernandes, P. Grey, R. V. Pontes, L. Pereira, R. Martins, M. H. Godinho, and E. Fortunato. 2014. Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology 25 (9):094008. doi:10.1088/0957-4484/25/9/094008.
  • Ibrahim H MM and Hassan M S. (2016). Characterization and antimicrobial properties of cotton fabric loaded with green synthesized silver nanoparticles. Carbohydrate Polymers, 151 841–850. 10.1016/j.carbpol.2016.05.041
  • Jabar, J. M., T. E. Adedayo, and Y. A. Odusote. 2021. Green, eco-friendly and sustainable alternative in dyeing cotton fabric using aqueous extract Mucuna slonaei F dye: Effects of metal salts pre-mordanting on color strength and fastness properties. Current Research in Green and Sustainable Chemistry 4:100151. doi:10.1016/j.crgsc.2021.100151.
  • Kang, C., S. S. Kim, S. J. Kim, and J. W. Lee. 2017. The significant influence of bacterial reaction on physico-chemical property changes of biodegradable natural and synthetic polymers using Escherichia coli. Polymers 9 (4):1–9. doi:10.3390/polym9040121.
  • Khan, M. A. M., S. Kumar, M. Ahamed, J. Ahmed, A. Kumar, and M. A. Shar. 2021. BaTiO3@rGO nanocomposite: Enhanced photocatalytic activity as well as improved electrode performance. Journal of Materials Science: Materials in Electronics 32:12911–21. doi:10.1007/s10854-020-04514-0.
  • Kumar, S., and V. Luthra. 2021. Raman and infrared spectroscopic investigation of the effects of yttrium and tin co-doping in barium titanate. The Journal of Physics and Chemistry of Solids 154 (March):110079. doi:10.1016/j.jpcs.2021.110079.
  • Kumar, S., M. Sharma, T. Frömling, and R. Vaish. 2021. Antibacterial ferroelectric materials: Advancements and future directions. Journal of Industrial and Engineering Chemistry 97:95–110. doi:10.1016/j.jiec.2021.02.016.
  • Kumar, S., M. Sharma, S. Powar, E. N. Kabachkov, and R. Vaish. 2019. Impact of remnant surface polarization on photocatalytic and antibacterial performance of BaTiO3. Journal of the European Ceramic Society 39 (9):2915–22. doi:10.1016/j.jeurceramsoc.2019.03.029.
  • Kumar, A., M. Sharma, and R. Vaish. 2022a. Durable antibacterial cotton fabric via spray-coating of photocatalytic MoS2. Materials Chemistry and Physics 126658. doi:10.1016/j.matchemphys.2022.126658.
  • Kumar, A., M. Sharma, and R. Vaish. 2022b. Screen printed calcium fluoride nanoparticles embedded antibacterial cotton fabric. Materials Chemistry and Physics 288:126449. doi:10.1016/j.matchemphys.2022.126449.
  • Liu, J., G. Gao, S. Zhang, Y. Huang, J. Wu, X. Hu, J. Lu, Q. Zhang, L. Zhou, and Y. Huang. 2019. Cotton-assisted surgical clipping of very small aneurysms: A two-center study. World Neurosurgery 127:e242–50. doi:10.1016/j.wneu.2019.02.227.
  • Li, P., B. Wang, Y.-Y. Liu, Y.-J. Xu, Z.-M. Jiang, C.-H. Dong, L. Zhang, Y. Liu, and P. Zhu. 2020. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics. Carbohydrate Polymers 237:116173. doi:10.1016/j.carbpol.2020.116173.
  • Marin, E., F. Boschetto, T. P. M. Sunthar, M. Zanocco, E. Ohgitani, W. Zhu, and G. Pezzotti. 2021. Antibacterial effects of barium titanate reinforced polyvinyl-siloxane scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials 70 (6):425–36. doi:10.1080/00914037.2020.1725757.
  • Marković, D., C. Deeks, T. Nunney, Ž. Radovanović, M. Radoičić, Z. Šaponjić, and M. Radetić. 2018. Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids. Carbohydrate Polymers 200:173–82. doi:10.1016/j.carbpol.2018.08.001.
  • Montaser, A. S., M. Rehan, W. M. El-Senousy, and S. Zaghloul. 2020. Designing strategy for coating cotton gauze fabrics and its application in wound healing. Carbohydrate Polymers 244:116479. doi:10.1016/j.carbpol.2020.116479.
  • Nhlapo, M., M. Mashego, M. Low, D. Ming, and K. Harding. 2019. Investigating the development of low-cost sanitary pads. Procedia Manufacturing 35:589–94. doi:10.1016/j.promfg.2019.05.083.
  • Pandiyarasan, V., J. Archana, A. Pavithra, V. Ashwin, M. Navaneethan, Y. Hayakawa, and H. Ikeda. 2017. Hydrothermal growth of reduced graphene oxide on cotton fabric for enhanced ultraviolet protection applications. Materials Letters 188:123–26. doi:10.1016/j.matlet.2016.11.047.
  • Portella, E. H., D. Romanzini, C. C. Angrizani, S. C. Amico, and A. J. Zattera. 2016. Influence of stacking sequence on the mechanical and dynamic mechanical properties of cotton/glass fiber reinforced polyester composites. Materials Research 19 (3):542–47. doi:10.1590/1980-5373-MR-2016-0058.
  • Qin, S., D. Liu, Z. Zuo, Y. Sang, X. Zhang, F. Zheng, H. Liu, and X.-G. Xu. 2010. UV-irradiation-enhanced ferromagnetism in BaTiO3. The Journal of Physical Chemistry Letters 1 (1):238–41. doi:10.1021/jz900131x.
  • Qi, H., J. Pan, F. Qing, K. Yan, and G. Sun. 2016. Anti-wrinkle and UV protective performance of cotton fabrics finished with 5-(carbonyloxy succinic)-benzene-1,2,4-tricarboxylic acid. Carbohydrate Polymers 154:313–19. doi:10.1016/j.carbpol.2016.05.108.
  • Qiu, Q., S. Chen, Y. Li, Y. Yang, H. Zhang, Z. Quan, X. Qin, R. Wang, and J. Yu. 2020. Functional nanofibers embedded into textiles for durable antibacterial properties. Chemical Engineering Journal 384:123241. doi:10.1016/j.cej.2019.123241.
  • Raeisi, M., Y. Kazerouni, A. Mohammadi, M. Hashemi, I. Hejazi, J. Seyfi, H. A. Khonakdar, and S. M. Davachi. 2021. Superhydrophobic cotton fabrics coated by chitosan and titanium dioxide nanoparticles with enhanced antibacterial and UV-protecting properties. International Journal of Biological Macromolecules 171:158–65. doi:10.1016/j.ijbiomac.2020.12.220.
  • Raja, S., D. Bheeman, R. Rajamani, S. Pattiyappan, S. Sugamaran, and C. S. Bellan. 2015. Synthesis, characterization and remedial aspect of BaTiO3 nanoparticles against bacteria. Nanomedicine and Nanobiology 2 (1):16–20. doi:10.1166/nmb.2015.1014.
  • Ranjbar-Mohammadi, M. 2018. Production of cotton fabrics with durable antibacterial property by using gum tragacanth and silver. International Journal of Biological Macromolecules 109:476–82. doi:10.1016/j.ijbiomac.2017.12.093.
  • Sasikumar, M., A. Ganeshkumar, M. N. Chandraprabha, R. Rajaram, R. H. Krishna, N. Ananth, and P. Sivakumar. 2018. Investigation of Antimicrobial activity of CTAB assisted hydrothermally derived Nano BaTiO3. Materials Research Express 6 (2):025408. doi:10.1088/2053-1591/aaee3b.
  • Sela, S. K., A. K. M. Nayab-Ul-Hossain, M. S. I. Rakib, and M. K. H. Niloy. 2020. Improving the functionality of raw cotton: Simultaneous strength increases and additional multi-functional properties. Heliyon 6 (8):e04607. doi:10.1016/j.heliyon.2020.e04607.
  • Shaheen, T. I., M. E. El-Naggar, A. M. Abdelgawad, and A. Hebeish. 2016. Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. International Journal of Biological Macromolecules 83:426–32. doi:10.1016/j.ijbiomac.2015.11.003.
  • Trivedi, M. K., G. Nayak, S. Patil, R. M. Tallapragada, O. Latiyal, and S. Jana. 2015. Impact of Biofield Treatment on Atomic and Structural Characteristics of Barium Titanate Powder. Industrial Engineering & Management 4 (3):1000166. doi:10.4172/2169-0316.1000166.
  • Valacchi, G., C. Sticozzi, A. Pecorelli, F. Cervellati, C. Cervellati, and E. Maioli. 2012. Cutaneous responses to environmental stressors. Annals of the New York Academy of Sciences 1271 (1):75–81. doi:10.1111/j.1749-6632.2012.06724.x.
  • Verma, M., N. Gahlot, S. S. J. Singh, and N. M. Rose. 2021. UV protection and antibacterial treatment of cellulosic fibre (cotton) using chitosan and onion skin dye. Carbohydrate Polymers 257:117612. doi:10.1016/j.carbpol.2020.117612.
  • Wang, W., L. Cao, W. Liu, G. Su, and W. Zhang. 2013. Low-temperature synthesis of BaTio 3 powders by the sol–gel-hydrothermal method. Ceramics International 39 (6):7127–34. doi:10.1016/j.ceramint.2013.02.055.
  • Wegmann, M., L. Watson, and A. Hendry. 2004. XPS analysis of submicrometer barium titanate powder. Journal of the American Ceramic Society 87 (3):371–77. doi:10.1111/j.1551-2916.2004.00371.x.
  • Wong, A. S. W., Y. Li, and K.-W. Yeung. 2005. The influence of thermal comfort perception on consumer’s preferences to sportswear. Elsevier Ergonomics Book Series 3:321–28. doi:10.1016/S1572-347X(05)80051-5.
  • Xing, H., J. Cheng, X. Tan, C. Zhou, L. Fang, and J. Lin. 2020. Ag nanoparticles-coated cotton fabric for durable antibacterial activity: Derived from phytic acid–ag complex. The Journal of the Textile Institute 111 (6):855–61. doi:10.1080/00405000.2019.1668137.
  • Xu, Q., P. Wang, Y. Zhang, and C. Li. 2021. Durable antibacterial and UV protective properties of cotton fabric coated with carboxymethyl chitosan and Ag/TiO2 composite nanoparticles. Fibers and Polymers 23:386–95. doi:10.1007/s12221-021-0352-z.
  • Xu, Q., L. Xie, H. Diao, F. Li, Y. Zhang, F. Fu, and X. Liu. 2017. Antibacterial cotton fabric with enhanced durability prepared using silver nanoparticles and carboxymethyl chitosan. Carbohydrate Polymers 177:187–93. doi:10.1016/j.carbpol.2017.08.129.
  • Ye, Z., S. Li, S. Zhao, L. Deng, J. Zhang, and A. Dong. 2021. Textile coatings configured by double-nanoparticles to optimally couple superhydrophobic and antibacterial properties. Chemical Engineering Journal 420:127680. doi:10.1016/j.cej.2020.127680.
  • Zhang, D., L. Chen, C. Zang, Y. Chen, and H. Lin. 2013. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability. Carbohydrate Polymers 92:2088–94. doi:10.1016/j.carbpol.2012.11.100.
  • Zhang, S., T. Zhang, J. He, and X. Dong. 2021. Effect of AgNP distribution on the cotton fiber on the durability of antibacterial cotton fabrics. Cellulose 28:9489–504. doi:10.1007/s10570-021-04113-0.
  • Zhou, S., W. Wang, Y. Sun, X. Tang, B. Zhang, and X. Yao. 2021. Antibacterial effect of Ag-PMANa modified cotton. Colloids and Surfaces A: Physicochemical and Engineering Aspects 618:126453. doi:10.1016/j.colsurfa.2021.126453.