697
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Preparation and Evaluation of Thermal Properties of Composites Based on Polypropylene Reinforced with Garlic Husk Particles (GHP)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ashori, A., and A. Nourbakhsh. 2010. Bio-based composites from waste agricultural residues. Waste management 30 (4):1–12. doi:10.1016/j.wasman.2009.08.003.
  • Awang, M., W. R. W. Mohd, and N. Sarifuddin. 2019. Study the effects of an addition of titanium dioxide (TiO2) on the mechanical and thermal properties of polypropylene-rice husk green composites. Materials Research Express 6 (7):075311. doi:10.1088/2053-1591/ab1173.
  • Bazan, P., K. Salasinska, and S. Kuciel. 2021. Flame retardant polypropylene reinforced with natural additives. Industrial Crops and Products 164:113356. doi:10.1016/j.indcrop.2021.113356.
  • Carrier, M., A. Loppinet-Serani, D. Denux, J. M. Lasnier, F. Ham-Pichavant, F. Cansell, and C. Aymonier. 2011. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass & bioenergy 35 (1):298–307. doi:10.1016/j.biombioe.2010.08.067.
  • Chen, X., L. Yin, H. Zhou, J. Liu, X. Li, X. Ai, and K. Huang. 2018. Efficient removal of lead from washing effluent of lead-contaminated soil with garlic peel. Chemical Research in Chinese Universities 34 (6):1020–27. doi:10.1007/s40242-018-8019-z.
  • Chitra, N. J., and R. Vasanthakumari. 2012. Studies on polypropylene bio composite with corn husk waste. International Journal of Scientific & Engineering Research 3 (7):2229–5515.
  • Dimzoski, B., G. Bogoeva-Gaceva, G. Gentile, M. Avella, and A. Grozdanov. 2009. Polypropylene-based eco-composites filled with agricultural rice hulls waste. Chemical and Biochemical Engineering Quarterly 23 (2):225–30.
  • Essabir, H., S. Nekhlaoui, M. Malha, M. O. Bensalah, F. Z. Arrakhiz, A. Qaiss, and R. Bouhfid. 2013. Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties. Materials & Design 51:225–30. doi:10.1016/j.matdes.2013.04.031.
  • French, A. D. 2020. Increment in evolution of cellulose crystallinity analysis. Cellulose 27 (10):5445–48. doi:10.1007/s10570-020-03172-z.
  • Hansen, H., F. Arancibia, and C. Gutiérrez. 2010. Adsorption of copper onto agriculture waste materials. Journal of Hazardous Materials 180 (1–3):442–48. doi:10.1016/j.jhazmat.2010.04.050.
  • Hawal, L. H., A. O. Al-Sulttani, and N. O. Kariem. 2021. Chromium elimination from contaminated soil by electro-kinetic remediation, using garlic peels powder. Journal of Ecological Engineering 22 (7):252–59. doi:10.12911/22998993/139117.
  • Hernández-Varela, J. D., J. J. Chanona-Pérez, H. A. C. Benavides, F. C. Sodi, and M. Vicente-Flores. 2021. Effect of ball milling on cellulose nanoparticles structure obtained from garlic and agave waste. Carbohydrate Polymers 255:117347. doi:10.1016/j.carbpol.2020.117347.
  • Hussain, J., X. Wei, L. Xue-Gang, S. R. U. Shah, M. Aslam, I. Ahmed, S. Abdullh, A. Babar, A. M. Jakhar, and T. Azam. 2021. Garlic (Allium sativum) based interplanting alters the heavy metals absorption and bacterial diversity in neighboring plants. Scientific Reports 11 (1):1–13. doi:10.1038/s41598-021-85269-4.
  • Ijdo, W. L., and T. J. Pinnavaia. 1998. Staging of organic and inorganic gallery cations in layered silicate heterostructures. Journal of Solid State Chemistry 139 (2):281–89. doi:10.1006/jssc.1998.7842.
  • Izwan, S. M., S. M. Sapuan, M. Y. M. Zuhri, and A. R. Mohamed. 2021. Thermal stability and dynamic mechanical analysis of benzoylation treated sugar palm/kenaf fiber reinforced polypropylene hybrid composites. Polymers 13 (17):2961. doi:10.3390/polym13172961.
  • Kaelble, D. H. 1969. Free volume and polymer rheology. In Rheology theory and applications, ed. F. R. Eirich, Vol. 5, 1st ed., 223–96. New York and London: Academic Press.
  • Kajaks, J., K. Kalnins, S. Uzulis, and J. Matvejs. 2014. Physical and mechanical properties of composites based on polypropylene and timber industry waste. Central European Journal of Engineering 4 (4):385–90. doi:10.2478/s13531-013-0172-z.
  • Kallel, F., F. Bettaieb, R. Khiari, A. García, J. Bras, and S. E. Chaabouni. 2016. Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Industrial Crops and Products 87:287–96. doi:10.1016/j.indcrop.2016.04.060.
  • Koay, S. C., S. Husseinsyah, and H. Osman. 2013. Modified cocoa pod husk-filled polypropylene composites by using methacrylic acid. BioResources 8 (3):3260–75. doi:10.15376/biores.8.3.3260-3275.
  • Liu, W., Y. Liu, Y. Tao, Y. Yu, H. Jiang, and H. Lian. 2014. Comparative study of adsorption of Pb (II) on native garlic peel and mercerized garlic peel. Environmental Science and Pollution Research 21 (3):2054–63. doi:10.1007/s11356-013-2112-0.
  • Machado, G., E. L. Denardin, E. J. Kinast, M. C. Gonçalves, M. A. De Luca, S. R. Teixeira, and D. Samios. 2005. Crystalline properties and morphological changes in plastically deformed isotatic polypropylene evaluated by X-ray diffraction and transmission electron microscopy. European Polymer Journal 41 (1):129–38. doi:10.1016/j.eurpolymj.2004.08.011.
  • Melo, P. M. A., O. B. Macêdo, G. P. Barbosa, A. S. F. Santos, and L. B. Silva. 2021. Reuse of natural waste to improve the thermal stability, stiffness, and toughness of postconsumer polypropylene composites. Journal of Polymers and the Environment 29 (2):538–51. doi:10.1007/s10924-020-01907-4.
  • Moreno, L. M., S. Gorinstein, O. J. Medina, J. Palacios, and E. J. Muñoz. 2020. Valorization of garlic crops residues as precursors of cellulosic materials. Waste and Biomass Valorization 11 (9):4767–79. doi:10.1007/s12649-019-00799-3.
  • Nayak, S. K., S. Mohanty, and S. K. Samal. 2009. Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Materials Science and Engineering: A 523 (1–2):32–38. doi:10.1016/j.msea.2009.06.020.
  • Nourbakhsh, A., A. Ashori, and A. K. Tabrizi. 2014. Characterization and biodegradability of polypropylene composites using agricultural residues and waste fish. Composites Part B:Engineering 56:279–83. doi:10.1016/j.compositesb.2013.08.028.
  • Nuñez, A. J., J. M. Kenny, M. M. Reboredo, M. I. Aranguren, and N. E. Marcovich. 2002. Thermal and dynamic mechanical characterization of polypropylene-woodflour composites. Polymer Engineering & Science 42 (4):733–42. doi:10.1002/pen.10985.
  • Parlayıcı, S., and E. Pehlivan. 2015. Natural biosorbents (garlic stem and horse chesnut shell) for removal of chromium (VI) from aqueous solutions. Environmental Monitoring and Assessment 187 (12):1–10. doi:10.1007/s10661-015-4984-6.
  • Prithivirajan, R., S. Jayabal, and G. Bharathiraja. 2015. Bio-based composites from waste agricultural residues: Mechanical and morphological properties. Cellulose Chemistry and Technology 49 (1):65–68.
  • Quillin, D. T., D. F. Caulfield, and J. A. Koutsky. 1993. Crystallinity in the polypropylene/cellulose system. I. Nucleation and crystalline morphology. Journal of Applied Polymer Science 50 (7):1187–94. doi:10.1002/app.1993.070500709.
  • Raghu, N., A. Kale, S. Chauhan, and P. K. Aggarwal. 2018. Rice husk reinforced polypropylene composites: Mechanical, morphological and thermal properties. Journal of the Indian Academy of Wood Science 15 (1):96–104. doi:10.1007/s13196-018-0212-7.
  • Reddy, J. P., and J. W. Rhim. 2014. Isolation and characterization of cellulose nanocrystals from garlic skin. Materials letters 129:20–23. doi:10.1016/j.matlet.2014.05.019.
  • Rivera-Armenta, J. L., B. A. Salazar-Cruz, A. C. Espindola-Flores, D. S. Villarreal-Lucio, C. M. De León-Almazán, and J. Estrada-Martínez. 2022. Thermal and thermomechanical characterization of Polypropylene-seed shell particles composites. Applied Sciences 12:1–12. doi:10.3390/app12168336.
  • Ruiz-Orta, C., J. P. Fernandez-Blazquez, A. M. Anderson-Wile, G. W. Coates, and R. G. Alamo. 2011. Isotactic polypropylene with (3, 1) chain-walking defects: Characterization, crystallization, and melting behaviors. Macromolecules 44 (9):3436–51. doi:10.1021/ma200231a.
  • Salasinska, K., and J. Ryszkowska. 2015. The effect of filler chemical constitution and morphological properties on the mechanical properties of natural fiber composites. Composite Interfaces 22 (1):39–50. doi:10.1080/15685543.2015.984521.
  • Salazar-Cruz, B. A., M. Y. Chávez-Cinco, A. B. Morales-Cepeda, C. E. Ramos-Galván, and J. L. Rivera-Armenta. 2022. Evaluation of thermal properties of composites prepared from Pistachio Shell particles treated chemically and polypropylene. Molecules 27 (2):426. doi:10.3390/molecules27020426.
  • Samariha, A., A. Bastani, M. Nemati, M. Kiaei, H. Nosrati, and M. Farsi. 2013. Investigation of the mechanical properties of bagasse flour/polypropylene composites. Mechanics of Composite Materials 49 (4):447–54. doi:10.1007/s11029-013-9361-3.
  • Samios, D., S. Tokumoto, and E. L. Denerdin. 2005. Large plastic deformation of isotatic poly (propylene)(iPP) evaluated by WAXD techniques. Macromolecular Symposia 229 (1):179–87. doi:10.1002/masy.200551121.
  • Singh, T., B. Gangil, A. Patnaik, D. Biswas, and G. Fekete. 2019. Agriculture waste reinforced corn starch-based biocomposites: Effect of rice husk/walnut shell on physicomechanical, biodegradable and thermal properties. Materials Research Express 6 (4):045702. doi:10.1088/2053-1591/aafe45.
  • Somani, R. H., B. S. Hsiao, A. Nogales, H. Fruitwala, A. Srinivas, and A. H. Tsou. 2001. Structure development during shear flow induced crystallization of i-PP: In situ Wide-Angle X-ray diffraction study. Macromolecules 34 (17):5902–09. doi:10.1021/ma0106191.
  • Sun, J., X. Li, X. Ai, J. Liu, Y. Yin, Y. Huang, H. Zhou, and K. Huang. 2018. Efficient removal of cadmium from soil-washing effluents by garlic peel biosorbent. Environmental Science and Pollution Research 25 (19):19001–11. doi:10.1007/s11356-018-2109-9.
  • Supaphol, P., and J. S. Lin. 2001. Crystalline memory effect in isothermal crystallization of syndiotactic polypropylenes: Effect of fusion temperature on crystallization and melting behavior. Polymer 42 (23):9617–26. doi:10.1016/S0032-3861(01)00507-9.
  • Wang, S., A. Ajji, S. Guo, and C. Xiong. 2017. Preparation of microporous polypropylene/titanium dioxide composite membranes with enhanced electrolyte uptake capability via melt extruding and stretching. Polymers 9 (12):110. doi:10.3390/polym9030110.
  • Yiga, V. A., S. Pagel, M. Lubwama, S. Epple, P. W. Olupot, and C. Bonten. 2020. Development of fiber-reinforced polypropylene with NaOH pretreated rice and coffee husks as fillers: Mechanical and thermal properties. Journal of Thermoplastic Composite Materials 33 (9):1269–91. doi:10.1177/0892705718823255.