1,175
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Investigation of Tensile Behavior of Carbon Nanotube/Coir Fiber/Fly Ash Reinforced Epoxy Polymer Matrix Composite

ORCID Icon, , , , , ORCID Icon & ORCID Icon show all

References

  • Abhishek, K., V. R. Kumar, S. Datta, and S. S. D. Mahapatra. 2017. Parametric appraisal and optimization in machining of CFRP composites by using TLBO (Teaching–Learning Based Optimization Algorithm). Journal of Intelligent Manufacturing 28 (8):1769–15. doi:10.1007/s10845-015-1050-8.
  • Anjineyulu, K., R. Pandiselvam, K. Siliveru, J. Prakash Pandey, N. Sagarika, C. H. S. Srinivas, A. Kumar, A. Singh, and S. D. Prakash. 2021. Modeling and optimization of process parameters for nutritional enhancement in enzymatic milled eice by Multiple Linear Regression (MLR) and Artificial Neural Network (ANN). Foods 10 (12):2975. doi:10.3390/foods10122975.
  • Ashok, K., D. Ajith, C. Bibin, R. Sheeja, and R. Nishanth. 2021. Influence of nanofiller lignite fly ash on tribo-mechanical performance of sansevieria roxburghiana fiber reinforced epoxy composites. Journal of Natural Fibers 19 (13):1–15. doi:10.1080/15440478.2021.1902904.
  • ASTM Standard D3039/D3039M. 2017. Standard test method for tensile properties of polymer matrix composite materials. West Conshohocken, PA: ASTM International. doi:10.1520/D3039M-17.
  • Aziz, S., A. Belaadi, and A. Haddad. 2022. Moisture absorption of cork-based biosandwich material extracted from Quercussuber L. plant: ANN and Fick’s modelling. Journal of Natural Fibers 1–18. doi:10.1080/15440478.2022.2072996.
  • Barbuta, M., and R. Bucur. 2017. Combined Effect of Fly Ash and Fibers on Properties of Cement Concrete. Procedia Engineering 181:280–284. doi:10.1016/j.proeng.2017.02.390.
  • Behera, S. K., H. Meena, S. Chakraborty, and B. C. Meikap. 2018. Application of response surface methodology (RSM) for optimization of leaching parameters for ash reduction from low-grade coal. International Journal of Mining Science and Technology 28 (4):621–629. doi:10.1016/j.ijmst.2018.04.014.
  • Bhingare, N. H., and S. Prakash. 2020. Effect of polyurethane resin addition on acoustic performance of natural coconut coir fiber. Journal of Natural Fibers 19 (8):1–12. doi:10.1080/15440478.2020.1836545.
  • Chen, P., J. Li, and L. Zhang. 2018. Analysis of mechanical characteristics of fly ash cenospheres reinforced epoxy composites. Journal of Wuhan University of Technology-Materials Science Edition 33 (1):139–45. doi:10.1007/s11595-018-1798-8.
  • Furtos, G., L. Molnar, L. Silaghi-Dumitrescu, P. Pascuta, and K. Korniejenko. 2021. Mechanical and thermal properties of wood fiber reinforced geopolymer composites. Journal of Natural Fibers 19 (13):1–16. doi:10.1080/15440478.2021.1929655.
  • Furtos, G., L. Silaghi-Dumitrescu, P. Pascuta, C. Sarosi, and K. Korniejenko. 2021. Mechanical properties of wood fiber reinforced geopolymer composites with sand addition. Journal of Natural Fibers 18 (2):285–96. doi:10.1080/15440478.2019.1621792.
  • Gao, N., Z. Zhang, L. Tang, H. Hou, and K. Chen. 2021. Design of broadband quasi-perfect sound absorption of composite hybrid porous metamaterial using TLBO algorithm. Applied Acoustics 183:108296. doi:10.1016/j.apacoust.2021.108296.
  • Gopalan, V., and V. Pragasam. 2018. Determination of stress intensity factor (SIF) of coir and aloe vera fiber reinforced hybrid polymer matrix composites. UPB Scientific Bulletin, Series D: Mechanical Engineering 80 (1):219–28.
  • Karthikeyan, A., K. Balamurugan, and A. Kalpana. 2014. The Effect of SLS Treatment on Tensile Property of Coconut Fiber Reinforced Epoxy Composites. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering 38:157–66.
  • Kavya, H. M., S. Bavan, B. Yogesha, M. R. Sanjay, S. Siengchin, and S. Gorbatyuk. 2021. Effect of Coir Fiber and Inorganic Filler on Physical and Mechanical Properties of Epoxy Based Hybrid Composites. Polymer Composites 42 (8):3911–21. doi:10.1002/pc.26103.
  • Kesarla, H., K. Rohit, and A. Mohod. 2018. Study on Tensile Behavior of Fly Ash Reinforced Hybrid Polymer Matrix Composite. Materials Today: Proceedings 5 (5):11922–32. doi:10.1016/j.matpr.2018.02.166.
  • Lal, R. K., G. Pankhuri, C. S. Chanotiya, M. Anand, and M. Ranjana. 2020. Genetics of essential oil yield and their component traits in vetiver (Chrysopogon zizanioides (L.) Roberty). J. Med. Plants. Studies 8 (4):56–64.
  • Lal, A. M. N., M. V. Prince, A. Kothakota, R. Pandiselvam, R. Thirumdas, N. Kumar Mahanti, and R. Sreeja. 2021. Pulsed Electric field combined with microwave-assisted extraction of pectin polysaccharide from jackfruit waste. Innovative Food Science and Emerging Technologies 74:102844. doi:10.1016/j.ifset.2021.102844.
  • Luz, F. S. D., and S. N. Monteiro. 2017. Ballistic application of coir fiber reinforced epoxy composite in multilayered armor. Materials Research 20 (2):23–28. doi:10.1590/1980-5373-mr-2016-0951.
  • Meng, T., D. Dai, X. Yang, and H. Yu. 2021. Effect of fly ash on the mechanical properties and microstructure of cement-stabilized materials with 100% recycled mixed aggregates. Minerals 11 (9):9. doi:https://doi.org/10.3390/min11090992.
  • Mittal, M., and R. Chaudhary. 2018. Experimental investigation on the mechanical properties and water absorption behavior of randomly oriented short pineapple/coir fiber-reinforced hybrid epoxy composites. Materials Research Express 6 (1):015313. doi:10.1088/2053-1591/aae944.
  • Mohan, K., and T. Rajmohan. 2017. Fabrication and characterization of MWCNT filled hybrid natural fiber composites. Journal of Natural Fibers 14 (6):864–74. doi:10.1080/15440478.2017.1300115.
  • Monticeli, F. M., R. M. Neves, and H. L. O. Júnior. 2021. Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers. Cellulose 28 (4):1961–71. doi:10.1007/s10570-021-03684-2.
  • Moumen, A. E., M. Tarfaoui, and H. Benyahia. 2019. Mechanical behavior of carbon nanotubes-based polymer composites under impact tests. Journal of Composites Materials 53 (7):925–40. doi:10.1177/0021998318793502.
  • Mulenga, T. K., A. U. Ude, and C. Vivekanandhan. 2021. Techniques for modelling and optimizing the mechanical properties of natural fiber composites: A review. Fibers 9 (1):6–17. doi:10.3390/fib9010006.
  • Ornaghi, H. L., R. M. Neves, and F. M. Monticeli. 2021. Application of the Artificial Neural Network (ANN) approach for prediction of the kinetic parameters of lignocellulosic. Fibers Textiles 1 (2):258–67. doi:10.3390/textiles1020013.
  • Pandiselvam, R., V. Prithviraj, M. R. Manikantan, P. P. Shameena Beegum, S. V. Ramesh, S. Padmanabhan, A. Kothakota, A. C. Mathew, K. B. Hebbar, and A. Mousavi Khaneghah. 2022. Central composite design, pareto analysis, and artificial neural network for modeling of microwave processing parameters for tender coconut water. Measurement: Food 5:100015. doi:10.1016/j.meafoo.2021.100015.
  • Patale, S. B., A. D. Desai, and A. B. Bhane. 2019. Finite element analysis of coir fiber based natural composite. International Journal of Emerging Technology and Advance Engineering 9 (8):17–22.
  • Ponsuriyaprakash, S., P. Udhayakumar, and R. Pandiyarajan. 2020. Experimental investigation of ABS matrix and cellulose fiber reinforced polymer composite materials. Journal of Natural Fibers 19 (9):3241–52. doi:10.1080/15440478.2020.1841065.
  • Rajkumar, G., G. K. Sathishkumar, K. Srinivasan, R. Karpagam, V. Dhivya, K. Sakthipandi, R. Sivakumar, M. Ibrahim, and M. Mohamed Akheel. 2021. Structural and mechanical properties of lignite fly ash and flax-added polypropylene polymer matrix composite. Journal of Natural Fibers 19 (13):1–19. doi:10.1080/15440478.2021.1927929.
  • Richa, R., N. C. Shahi, C. U. Lohani, A. Kothakota, R. Pandiselvam, N. Sagarika, A. Singh, P. K. Omre, and A. Kumar. 2021. Design and development of resistance heating apparatus-cum-solar drying system for enhancing fish drying rate. Journal of Food Process Engineering 45 (6). doi:10.1111/jfpe.13839.
  • Sagi, M. S. V., and K. Venkatesh. 2019. Experimental investigation on tensile strength of epoxy polymer composite with fly ash and fibers. International Journal for Innovative Engineering and Management Research 8 (9):1–9. https://ssrn.com/abstract=3446965.
  • Sastha Arumuga Pandi, S., Y. Roja, G. Jenitha, and K. Alagusankareswari. 2017. Experimental study on behavior of coir fiber reinforced concrete. International Journal of Civil Engineering and Technology 8 (2):141–47.
  • Sim, J., Y. Kang, and B. J. Kim. 2020. Preparation of fly ash/epoxy composites and its effects on mechanical properties. Polymers 12 (1):79. doi:10.3390/polym12010079.
  • Sinha, A. K., S. Bhattacharya, and H. Kumar Narang. 2019. Experimental determination and modelling of the mechanical properties of hybrid abaca-reinforced polymer composite using RSM. Polymers and Polymer Composites 27 (9):597–608. doi:10.1177/0967391119855843.
  • Srikanth, V., G. K. Rajesh, A. Kothakota, R. Pandiselvam, N. Sagarika, M. R. Manikantan, and K. P. Sudheer. 2020. Modeling and optimization of developed cocoa beans extractor parameters using box behnken design and artificial neural network. Computers and Electronics in Agriculture 177:105715. doi:10.1016/j.compag.2020.105715.
  • Srinivas, Y., S. Mary Mathew, A. Kothakota, N. Sagarika, and R. Pandiselvam. 2020. Microwave assisted fluidized bed drying of nutmeg mace for essential oil enriched extracts: An assessment of drying kinetics, process optimization and quality. Innovative Food Science and Emerging Technologies 66:102541. doi:10.1016/j.ifset.2020.102541.
  • Thozhur Loganathan, K., V. Kumar, K. Ayyappa, G. Mahendran, and G. Venkatachalam. 2020. Mechanical and vibrational property evaluation of banana fiber epoxy sandwich composite with steel wire mesh core. Journal of Natural Fibers 19 (11):1–14. doi:10.1080/15440478.2020.1848744.
  • Walte, A. B., K. Bhole, and J. Gholave. 2020. Mechanical characterization of coir fiber reinforced composite. Materials Today: Proceedings 24:557–66. doi:10.1016/j.matpr.2020.04.309.
  • Yousif, B. F., and H. Ku. 2012. Suitability of using coir fiber/polymeric composite for the design of liquid storage tanks. Materials & Design 36:847–53. doi:10.1016/j.matdes.2011.01.063.