1,034
Views
2
CrossRef citations to date
0
Altmetric
Review

Research Trends on Silk-Based Conductive Fibers with the Enhanced Machine Washability by Adopting PEDOT:PSS

&

References

  • An, C.-H., S. Kim, H.-J. Lee, and B. Hwang. 2017. Facile patterning using dry film photo-resists for flexible electronics: Ag nanowire networks and carbon nanotube networks. Journal of Materials Chemistry C 5 (19):4804–17. doi:10.1039/C7TC00885F.
  • Arat, R., G. Jia, and J. Plentz. 2022.Wet chemical method for highly flexible and conductive fabrics for smart textile applications. The Journal of the Textile Institute 1: 1–6.doi: 10.1080/00405000.2022.2061760
  • Bard, S., F. Schönl, M. Demleitner, and V. Altstädt. 2019. Copper and Nickel Coating of Carbon Fiber for Thermally and Electrically Conductive Fiber Reinforced Composites. Polymers 11 (5):823. doi:10.3390/polym11050823.
  • Chen, J., H. Li, L. Zhang, C. Du, T. Fang, and J. Hu. 2020. Direct Reduction of Graphene Oxide/Nanofibrillated Cellulose Composite Film and its Electrical Conductivity Research. Scientific Reports 10 (1):3124. doi:10.1038/s41598-020-59918-z.
  • Choi, S.-M., E.-J. Shin, Z. Sun-Mi, K.-M. Rao, Y.-J. Seok, S.-Y. Won, and S.-S. Han. 2022. Revised Manuscript with Corrections: Polyurethane-Based Conductive Composites: From Synthesis to Applications. International Journal of Molecular Sciences 23 (4):1938. doi:10.3390/ijms23041938.
  • Cui, Z., F. Robles Poblete, and Y. Zhu. 2019. Tailoring the Temperature Coefficient of Resistance of Silver Nanowire Nanocomposites and their Application as Stretchable Temperature Sensors. ACS Applied Materials & Interfaces 11 (19):17836–42. doi:10.1021/acsami.9b04045.
  • Darabi, S., M. Hummel, S. Rantasalo, M. Rissanen, I. Öberg Månsson, H. Hilke, B. Hwang, M. Skrifvars, M. M. Hamedi, H. Sixta, et al. 2020. Green Conducting Cellulose Yarns for Machine-Sewn Electronic Textiles. ACS Applied Materials & Interfaces 12 (50):56403–12. doi:10.1021/acsami.0c15399.
  • Dey, G., L. Yang, K.-B. Lee, and L. Wang. 2018. Characterizing Molecular Adsorption on Biodegradable MnO2 Nanoscaffolds. The Journal of Physical Chemistry C 122 (50):29017–27. doi:10.1021/acs.jpcc.8b09562.
  • Feng, Y., H. Zhang, Y. L. Li, and C. F. Rao. 2010. Temperature Sensing of Metal-Coated Fiber Bragg Grating. IEEE/ASME Transactions on Mechatronics 15 (4):511–19. doi:10.1109/TMECH.2010.2047111.
  • Gao, Q., M. Wang, X. Kang, C. Zhu, and M. Ge. 2020. Continuous wet-spinning of flexible and water-stable conductive PEDOT: PSS/PVA composite fibers for wearable sensors. Composites Communications 17:134–40. doi:10.1016/j.coco.2019.12.001.
  • Gibbs, P. T., and H. Asada. 2005. Wearable Conductive Fiber Sensors for Multi-Axis Human Joint Angle Measurements. Journal of Neuroengineering and Rehabilitation 2 (1):7. doi:10.1186/1743-0003-2-7.
  • Haghi, M., K. Thurow, and R. Stoll. 2017. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices. Hir 23 (1):4–15. doi:10.4258/hir.2017.23.1.4.
  • Hansora, D. P., N. G. Shimpi, and S. Mishra. 2015. Performance of hybrid nanostructured conductive cotton materials as wearable devices: An overview of materials, fabrication, properties and applications. RSC advances 5 (130):107716–70. doi:10.1039/C5RA16478H.
  • Heo, J. S., M. Faruk Hossain, and I. Kim. 2020. Challenges in Design and Fabrication of Flexible/Stretchable Carbon- and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review. Sensors 20 (14):3927. doi:10.3390/s20143927.
  • Honda, W., S. Harada, T. Arie, S. Akita, and K. Takei. 2014. Wearable, Human-Interactive, Health-Monitoring, Wireless Devices Fabricated by Macroscale Printing Techniques. Advanced Functional Materials 24 (22):3299–304. doi:10.1002/adfm.201303874.
  • Hong, X., W. Zhao, R. Yu, Q. Wang, F. Zeng, Y. Tao, Z. Jin, and C. Zhu. 2022. Multifunctional silver nanowire coated fabric capable of electrothermal, resistance temperature-sensitivity, electromagnetic interference shielding, and strain sensing. Journal of Industrial Textiles 0(0): 15280837221076029. doi:10.1177/15280837221076029.
  • Hwang, B., Y. An, H. Lee, E. Lee, S. Becker, Y.-H. Kim, and H. Kim. 2017. Highly Flexible and Transparent Ag Nanowire Electrode Encapsulated with Ultra-Thin Al2O3: Thermal, Ambient, and Mechanical Stabilities. Scientific reports 7 (1):41336. doi:10.1038/srep41336.
  • Hwang, B., and T. Gwang Yun. 2019. Stretchable and patchable composite electrode with trimethylolpropane formal acrylate-based polymer. Composites Part B: Engineering 163:185–92. doi:10.1016/j.compositesb.2018.11.009.
  • Hwang, B., Y. Han, and P. Matteini. 2022. Bending fatigue behavior of Ag nanowire/Cu thin-film hybrid interconnects for wearable electronics. Facta Universitatis, Series: Mechanical Engineering. doi:10.22190/FUME220730040H.
  • Hwang, B., A. Lund, Y. Tian, S. Darabi, and C. Müller. 2020. Machine-Washable Conductive Silk Yarns with a Composite Coating of Ag Nanowires and PEDOT:PSS. ACS Applied Materials & Interfaces 12 (24):27537–44. doi:10.1021/acsami.0c04316.
  • Hwang, B., H.-A.S Shin, T. Kim, Y.-C. Joo, and S. Min Han. 2014. Highly Reliable Ag Nanowire Flexible Transparent Electrode with Mechanically Welded Junctions. Small 10 (16):3397–404. doi:10.1002/smll.201303906.
  • Idumah, C. I. 2022. Recent advancements in conducting polymer bionanocomposites and hydrogels for biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials 71 (7):513–30. doi:10.1080/00914037.2020.1857384.
  • Kim, S., J. Kim, D. Kim, B. Kim, H. Chae, H. Yi, and B. Hwang. 2019. High-Performance Transparent Quantum Dot Light-Emitting Diode with Patchable Transparent Electrodes. ACS Applied Materials & Interfaces 11 (29):26333–38. doi:10.1021/acsami.9b05969.
  • Kim, H. K., M. Sun Kim, S. Yeon Chun, Y. Heum Park, B. Soo Jeon, J. Young Lee, Y. Ki Hong, J. Joo, and S. Hun Kim. 2003. Characteristics of electrically conducting polymer-coated textiles. Molecular Crystals and Liquid Crystals 405 (1):161–69. doi:10.1080/15421400390263550.
  • Kony, C., J. Tabor, and T. K. Ghosh. 2019. Electrically Conductive Coatings for Fiber-Based E-Textiles. Fibers 7 (6):51. doi:10.3390/fib7060051.
  • Kwak, Y. H., W. Kim, K. Bum Park, K. Kim, and S. Seo. 2017. Flexible heartbeat sensor for wearable device. Biosensors & bioelectronics 94:250–55. doi:10.1016/j.bios.2017.03.016.
  • Lee, Y., S. Bae, B. Hwang, M. Schroeder, Y. Lee, and S. Baik. 2019. Considerably improved water and oil washability of highly conductive stretchable fibers by chemical functionalization with fluorinated silane. Journal of Materials Chemistry C 7 (39):12297–305. doi:10.1039/C9TC03944A.
  • Lee, J.-Y., S. T. Connor, Y. Cui, and P. Peumans. 2008. Solution-Processed Metal Nanowire Mesh Transparent Electrodes. Nano letters 8 (2):689–92. doi:10.1021/nl073296g.
  • Lee, T.-W., M. Han, S.-E. Lee, and Y. Gyu Jeong. 2016. Electrically conductive and strong cellulose-based composite fibers reinforced with multiwalled carbon nanotube containing multiple hydrogen bonding moiety. Composites Science and Technology 123:57–64. doi:10.1016/j.compscitech.2015.12.006.
  • Lee, C., H. Kim, and B. Hwang. 2019. Fracture behavior of metal oxide/silver nanowire composite electrodes under cyclic bending. Journal of Alloys and Compounds 773:361–66. doi:10.1016/j.jallcom.2018.09.212.
  • Lee, J., H. Kwon, J. Seo, S. Shin, J. Hoon Koo, C. Pang, S. Son, J. Hyung Kim, Y. Hoon Jang, D. Eun Kim, et al. 2015. Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics. Advanced Materials 27 (15):2433–39. doi:10.1002/adma.201500009.
  • Lee, S., S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H. Jin Cho, H. Algadi, S. Al-Sayari, D. Eun Kim, et al. 2015. Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics. Advanced Functional Materials 25 (21):3114–21. doi:10.1002/adfm.201500628.
  • Liu, G., Q. Tan, H. Kou, L. Zhang, J. Wang, W. Lv, H. Dong, and J. Xiong. 2018. A Flexible Temperature Sensor Based on Reduced Graphene Oxide for Robot Skin Used in Internet of Things. Sensors 18 (5):1400. doi:10.3390/s18051400.
  • Lou, C.-W. 2005. Process of Complex Core Spun Yarn Containing a Metal Wire. Textile Research Journal 75 (6):466–73. doi:10.1177/0040517505053871.
  • Lu, L., W. Fan, S. Ge, R. Keey Liew, Y. Shi, H. Dou, S. Wang, and S. Shiung Lam. 2022. Progress in recycling and valorization of waste silk. The Science of the Total Environment 830:154812. doi:10.1016/j.scitotenv.2022.154812.
  • Lund, A., S. Darabi, S. Hultmark, J. D. Ryan, B. Andersson, A. Ström, and C. Müller. 2018. Roll-to-Roll Dyed Conducting Silk Yarns: A Versatile Material for E-Textile Devices. Advanced Materials Technologies 3 (12):1800251. doi:10.1002/admt.201800251.
  • Lund, A., Y. Tian, S. Darabi, and C. Müller. 2020. A polymer-based textile thermoelectric generator for wearable energy harvesting. Journal of Power Sources 480:228836. doi:10.1016/j.jpowsour.2020.228836.
  • Mayank, A. B., V. Sethi, and H. Gudwani. 2022. Spider-silk composite material for aerospace application. Acta astronautica 193:704–09. doi:10.1016/j.actaastro.2021.08.013.
  • Ma, J., Y. Zhang, M. Yuan, and C. Nan. 2020. Li Ion Exchanged α-MnO2 Nanowires as Efficient Catalysts for Li-O2 Batteries. Chemical Research in Chinese Universities 36 (6):1261–64. doi:10.1007/s40242-020-0077-3.
  • Muhammad, A., Z. Hassan, S. M. Mohammad, S. Rajamanickam, S. Mohammed Abed, and M. G. B. Ashiq. 2022. Realization of UV-C absorption in ZnO nanostructures using fluorine and silver co-doping. Colloid and Interface Science Communications 47:100588. doi:10.1016/j.colcom.2022.100588.
  • Niu, L., X. Miao, G. Jiang, A. Wan, Y. Li, and Q. Liu. 2020. Biomechanical energy harvest based on textiles used in self-powering clothing. Journal of Engineered Fibers and Fabrics 15:1558925020967352. doi:10.1177/1558925020967352.
  • Pani, D., A. Achilli, and A. Bonfiglio. 2018. Survey on Textile Electrode Technologies for Electrocardiographic (ECG) Monitoring, from Metal Wires to Polymers. Advanced Materials Technologies 3 (10):1800008. doi:10.1002/admt.201800008.
  • Pan, W., J. Wang, L. Yong-Ping, X.-B. Sun, J.-P. Wang, X.-X. Wang, J. Zhang, H.-D. You, Y. Gui-Feng, and Y.-Z. Long. 2020. Facile Preparation of Highly Stretchable TPU/Ag Nanowire Strain Sensor with Spring-Like Configuration. Polymers 12 (2):339. doi:10.3390/polym12020339.
  • Park, M., W. Kim, B. Hwang, and S. Min Han. 2019. Effect of varying the density of Ag nanowire networks on their reliability during bending fatigue. Scripta materialia 161:70–73. doi:10.1016/j.scriptamat.2018.10.017.
  • Pei, Z., Y. Zhang, and G. Chen. 2019. A core-spun yarn containing a metal wire manufactured by a modified vortex spinning system. Textile Research Journal 89 (1):113–18. doi:10.1177/0040517517736477.
  • Qian, L., D. He, H. Qin, X. Cao, J. Huang, and J. Li. 2022. Chitosan fabrics with synergy of silver nanoparticles and silver nanowires for enhanced conductivity and antibacterial activity. Journal of Industrial Textiles 51 (1_suppl):1279S–95S. doi:10.1177/15280837221101650.
  • Rodrigues, J. J. P. C., D. B. De Rezende Segundo, H. A. Junqueira, M. H. Sabino, R. M. Prince, J. Al-Muhtadi, and V. H. C. De Albuquerque. 2018. Enabling Technologies for the Internet of Health Things. IEEE Access 6:13129–41. doi:10.1109/ACCESS.2017.2789329.
  • Ryan, J. D., D. Alemu Mengistie, R. Gabrielsson, A. Lund, and C. Müller. 2017. Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles. ACS Applied Materials & Interfaces 9 (10):9045–50. doi:10.1021/acsami.7b00530.
  • Sammi, A., S. M. Divya, R. Kumar, and P. Chandra. 2022. Nano-bio-engineered silk matrix based devices for molecular bioanalysis. Biotechnology and Bioengineering 119 (3):784–806. doi:10.1002/bit.28021.
  • Seo, Y., H. Ha, J. Young Cheong, M. Leem, S. Darabi, P. Matteini, C. Müller, T. Gwang Yun, and B. Hwang. 2022. Highly Reliable Yarn-Type Supercapacitor Using Conductive Silk Yarns with Multilayered Active Materials. Journal of Natural Fibers 19 (3):835–46. doi:10.1080/15440478.2021.1993509.
  • Seo, Y., and B. Hwang. 2019. Mulberry-paper-based composites for flexible electronics and energy storage devices. Cellulose 26 (16):8867–75. doi:10.1007/s10570-019-02686-5.
  • Seo, Y., S. Ko, H. Ha, N. Qaiser, M. Leem, S. Jo Yoo, J. Hyeon Jeong, K. Lee, and B. Hwang. 2022. Stretchable carbonyl iron powder/polydimethylsiloxane composites for noise suppression in gigahertz bandwidth. Composites Science and Technology 218:109150. doi:10.1016/j.compscitech.2021.109150.
  • Shahzad, A., A. Rasheed, Z. Khaliq, M. Bilal Qadir, M. Qamar Khan, S. Talha Ali Hamdani, Z. Ali, A. Afzal, M. Irfan, M. Shafiq, et al. 2019. Processing of metallic fiber hybrid spun yarns for better electrical conductivity. Materials and Manufacturing Processes 34 (9):1008–15. doi:10.1080/10426914.2019.1594270.
  • Sheng, J., H. Li, S. Shen, R. Ming, B. Sun, J. Wang, D. Zhang, and Y. Tang. 2021. Investigation on Chemical Etching Process of FPCB with 18 μm Line Pitch. IEEE Access 9:50872–79. doi:10.1109/ACCESS.2021.3069284.
  • Shen, Y., Y. Wang, Z. Luo, and B. Wang. 2020. Durable, Sensitive, and Wide-Range Wearable Pressure Sensors Based on Wavy-Structured Flexible Conductive Composite Film. Macromolecular Materials and Engineering 305 (8):2000206. doi:10.1002/mame.202000206.
  • Singh, M., S. Rana, and A. Kumar Singh. 2022. Advanced nanomaterials utilized as top transparent electrodes in semi-transparent photovoltaic. Colloid and Interface Science Communications 46:100563. doi:10.1016/j.colcom.2021.100563.
  • Varghese, R., S. Salvi, P. Sood, J. Karsiya, and D. Kumar. 2022. Carbon nanotubes in COVID-19: A critical review and prospects. Colloid and Interface Science Communications 46:100544. doi:10.1016/j.colcom.2021.100544.
  • Wang, Y., X. Ai, S. Lu, T. Xing, N. Qi, and G. Chen. 2021. Fabrication of a type of silk/PEDOT conductive fibers for wearable sensor. Colloids and Surfaces: A, Physicochemical and Engineering Aspects 625:126909. doi:10.1016/j.colsurfa.2021.126909.
  • Wu, C., T. Whan Kim, F. Li, and T. Guo. 2016. Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core–Shell Nanocomposites. ACS Nano 10 (7):6449–57. doi:10.1021/acsnano.5b08137.
  • Yuan, R., Z. Jiang, Z. Wang, S. Gao, Z. Liu, M. Li, and G. Boczkaj. 2020. Hierarchical MnO2 nanoflowers blooming on 3D nickel foam: A novel micro-macro catalyst for peroxymonosulfate activation. Journal of Colloid and Interface Science 571:142–54. doi:10.1016/j.jcis.2020.03.041.
  • Zeng, W., L. Shu, Q. Li, S. Chen, F. Wang, and X.-M. Tao. 2014. Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Advanced Materials 26 (31):5310–36. doi:10.1002/adma.201400633.
  • Zhang, H., R. He, H. Liu, Y. Niu, Z. Li, F. Han, J. Li, X. Zhang, and F. Xu. 2021. A fully integrated wearable electronic device with breathable and washable properties for long-term health monitoring. Sensors and Actuators: A, Physical 322:112611. doi:10.1016/j.sna.2021.112611.