806
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Water-Based Synthesis of Novel Hybrid Material of Sulfated Polysaccharide Through Radical Polymerization Process

, , , , ORCID Icon &

References

  • Al-Sabagh, A. M., N. G. Kandile, R. A. El-Ghazawy, M. R. N. El-Din, and E. A. El-Sharaky. 2013. Synthesis and characterization of high molecular weight hydrophobically modified polyacrylamide nanolatexes using novel nonionic polymerizable surfactants. Egyptian Journal of Petroleum 22 (4):531–17. doi:https://doi.org/10.1016/j.ejpe.2013.11.007.
  • Beaumont, M., R. Tran, G. Vera, D. Niedrist, A. Rousset, R. Pierre, V. P. Shastri, and A. Forget. 2021. Hydrogel-forming algae polysaccharides: from seaweed to biomedical applications. Biomacromolecules 22 (3):1027–52. doi:10.1021/acs.biomac.0c01406.
  • Bi, S., D. Qin, S. Yuan, X. Chenga, and X. Chen. 2021. Homogeneous modification of chitin and chitosan based on an alkali/urea soluble system and their applications in biomedical engineering. Green Chemistry 23 (23):9318–33. doi:10.1039/D1GC03205D.
  • Cheng, S., C. Zhang, J. Li, X. Pan, X. Zhai, Y. Jiao, Y. Li, W. Dong, and X. Qi. 2021. Highly efficient removal of antibiotic from biomedical wastewater using Fenton-like catalyst magnetic pullulan hydrogels. Carbohydrate polymers 262:117951. doi:10.1016/j.carbpol.2021.117951.
  • Cui, R., and F. Zhu. 2021. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends in Food Science & Technology 107:491–508. doi:10.1016/j.tifs.2020.11.018.
  • Cumpstey, I. 2013. Chemical modification of polysaccharides. ISRN Organic Chemistry 2013:417672. doi:10.1155/2013/417672.
  • Dentini, M., G. Rinaldi, A. Barbetta, D. Risica, and G. Skja. 2006. Acid gel formation in (pseudo) alginates with and without G blocks produced by epimerising mannuronan with C5 epimerases. Carbohydrate Polymers 63 (4):519–26. doi:https://doi.org/10.1016/j.carbpol.2005.10.017.
  • De Paepe, I., H. Declercq, M. Cornelissen, and E. Schacht. 2002. Novel hydrogels based on methacrylate- modified agarose †. Polymer International 51 (10):867–70. doi:https://doi.org/10.1002/pi.945.
  • Hans, N., A. Malik, and S. Naik. 2021. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19 : mini review agaran. Bioresource Technology Reports 13:100623. doi:https://doi.org/10.1016/j.biteb.2020.100623.
  • Hu, X., W. Wei, X. Qi, H. Yu, L. Feng, J. Li, S. Wang, J. Zhang, and W. Dong. 2015. Preparation and characterization of a novel pH-sensitive Salecan-g-poly(acrylic acid) hydrogel for controlled release of doxorubicin. Journal of Materials Chemistry B 3 (13):2685–97. doi:https://doi.org/10.1039/c5tb00264h.
  • Jing, X., Y. Sun, X. Ma, and H. Hu. 2021. Marine polysaccharides: Green and recyclable resources as wound dressings. Materials Chemistry Frontiers 5 (15):5595–616. doi:10.1039/D1QM00561H.
  • Kumar, M., P. Singh, D. Parihar, P. K. Surolia, and G. Prasad. 2021a. Promising grafting strategies on cellulosic backbone through radical polymerization processes – a review. European Polymer Journal 152:110448. doi:10.1016/j.eurpolymj.2021.110448.
  • Kumar, M., P. Singh, D. Parihar, P. K. Surolia, and G. Prasad. 2021b. Application of grafted cellulosic material as bioadsorbent for segregating of non-desirable content from waste water – a review. Materials Today: Proceedings 43:2903–08. doi:https://doi.org/10.1016/j.matpr.2021.01.168.
  • Mishra, S., A. Mukul, G. Sen, and U. Jha. 2011. Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment. International Journal of Biological Macromolecules 48 (1):106–11. doi:https://doi.org/10.1016/j.ijbiomac.2010.10.004.
  • Parihar, D., M. Kumar, P. S. Gehlot, P. K. Surolia, and G. Prasad. 2021. Extraction and characterization of fractionated cellulose from acacia senegal. Journal of Natural Fibers 19 (15):10499–512. doi:10.1080/15440478.2021.1994092.
  • Petit, C. 2014. Microwave-assisted modifications of polysaccharides. Pure and Applied Chemistry 86 (11):1695–706. doi:https://doi.org/10.1515/pac-2014-0711.
  • Pomin, V. H. 2012. Unravelling glycobiology by NMR spectroscopy, in glycosy. ed. InTech. https://www.intechopen.com/chapters/39448
  • Prasad, K., G. Mehta, R. Meena, and A. K. Siddhanta. 2006. Hydrogel-forming agar-graft-PVP and κ-carrageenan-graft-PVP blends: rapid synthesis and characterization. Journal of Applied Polymer Science 102 (4):3654–63. doi:https://doi.org/10.1002/app.24145.
  • Prasad, G., K. Prasad, R. Meena, and A. K. Siddhanta. 2009. Facile preparation of chaetomorpha antennina based porous polysaccharide – PMMA hybrid material by radical polymerization under microwave irradiation. Journal of Materials Science 44 (15):4062–68. doi:https://doi.org/10.1007/s10853-009-3586-5.
  • Qi, X., W. Wei, J. Li, G. Zuo, X. Pan, T. Su, J. Zhang, and W. Dong. 2017. Salecan-based pH-sensitive hydrogels for insulin delivery. Molecular pharmaceutics 14 (2):431–40. doi:https://doi.org/10.1021/acs.molpharmaceut.6b00875.
  • Salimi, K., M. Topuzogullari, S. Dincer, and H. M. Aydin. 2016. Microwave-assisted green approach for graft copolymerization of L -lactic acid onto starch. Journal of Applied Polymer Science 133 (6):1–8. doi:https://doi.org/10.1002/app.42937.
  • Sanandiya, N. D., and A. K. Siddhanta. 2014. Chemical studies on the polysaccharides of salicornia brachiata. Carbohydrate Polymers 112:300–07. doi:https://doi.org/10.1016/j.carbpol.2014.05.072.
  • Sen, G., S. Mishra, G. U. Rani, P. Rani, and R. Prasad. 2012. Microwave initiated synthesis of polyacrylamide grafted psyllium and its application as a flocculant. International Journal of Biological Macromolecules 50 (2):369–75. doi:https://doi.org/10.1016/j.ijbiomac.2011.12.014.
  • Shi, Z., C. Jia, D. Wang, J. Deng, G. Xu, C. Wu, M. Dong, and Z. Guo. 2019. Synthesis and characterization of porous tree gum grafted copolymer derived from prunus cerasifera gum polysaccharide. International Journal of Biological Macromolecules 133:964–70. doi:https://doi.org/10.1016/j.ijbiomac.2019.04.128.
  • Singh, V., P. Kumar, and R. Sanghi. 2012. Use of microwave irradiation in the grafting modification of the polysaccharides – a review. Progress in Polymer Science 37 (2):340–64. doi:https://doi.org/10.1016/j.progpolymsci.2011.07.005.
  • Sorour, M., M. El-Sayed, N. Abd, E. Moneem, H. A. Talaat, and H. Shalaan. 2013. Grafted acrylamide using microwave (MW) and ultraviolet (UV) techniques characterization of hydrogel synthesized from natural polysaccharides blend grafted acrylamide using microwave (MW) and ultraviolet (UV) techniques. Starch - Stärke 65 (1–2):172–78. doi:https://doi.org/10.1002/star.201200108.
  • Tsoukatos, T., S. Pispas, and N. Hadjichristidis. 2001. Star-branched polystyrenes by nitroxide living free-radical polymerization. Journal of Polymer Science Part A: Polymer Chemistry 39:320–25. doi:10.1002/1099-0518(20010115)39:2<320:AID-POLA80>3.0.CO;2-N.
  • Ye, D., and J. Yang. 2015. Ion-responsive liquid crystals of cellulose nanowhiskers grafted with acrylamide. Carbohydrate Polymers 134:458–66. doi:10.1016/j.carbpol.2015.08.025.
  • Zhua, Z., J. Chena, Y. Chena, Y. Ma, Q. Yanga, Y. Fan, C. Fua, B. Jai, L. Rui, and L. Liao. 2022. Extraction, structural characterization and antioxidant activity of turmeric polysaccharides. LWT 154:112805. doi:10.1016/j.lwt.2021.112805.