927
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Pilot Study of Aptamer-Conjugated Silk Ligament with MSCs Recruitment Ability for ACL Reconstruction

ORCID Icon, ORCID Icon, , , , , ORCID Icon & ORCID Icon show all

References

  • Altman, G. H., F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan. 2003. Silk-based biomaterials. Biomaterials 24 (3):401–14. doi:10.1016/s0142-9612(02)00353-8.
  • Altman, G. H., R. L. Horan, H. H. Lu, J. Moreau, I. Martin, J. C. Richmond, and D. L. Kaplan. 2002. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23 (20):4131–41. doi:10.1016/s0142-9612(02)00156-4.
  • Andia, I., and N. Maffulli. 2017. Biological Therapies in Regenerative Sports Medicine. Sports Med 47 (5):807–28. doi:10.1007/s40279-016-0620-z.
  • Bascuñán, A. L., A. Biedrzycki, S. A. Banks, D. D. Lewis, and S. E. Kim. 2019. Large Animal Models for Anterior Cruciate Ligament Research. Frontiers in Veterinary Science no. 6 (6):292. doi:10.3389/fvets.2019.00292.
  • Batty, L. M., C. J. Norsworthy, N. J. Lash, J. Wasiak, A. K. Richmond, and J. A. Feller. 2015. Synthetic devices for reconstructive surgery of the cruciate ligaments: A systematic review. Arthroscopy: The Journal of Arthroscopic & Related Surgery 31 (5):957–68. doi:10.1016/j.arthro.2014.11.032.
  • Bellincampi, L. D., R. F. Closkey, R. Prasad, J. P. Zawadsky, and M. G. Dunn. 1998. Viability of fibroblast-seeded ligament analogs after autogenous implantation. Journal of Orthopaedic Research 16 (4):414–20. doi:10.1002/jor.1100160404.
  • Bi, F., Y. Chen, J. Liu, Y. Wang, D. Xu, and K. Tian. 2021. Anterior cruciate ligament reconstruction in a rabbit model using a silk-collagen scaffold modified by hydroxyapatite at both ends: A histological and biomechanical study. Journal of Orthopaedic Surgery and Research 16 (1):139. doi:10.1186/s13018-021-02281-0.
  • Blaker, C. L., S. Zaki, C. B. Little, and E. C. Clarke. 2021. Long-term Effect of a Single Subcritical Knee Injury: Increasing the Risk of Anterior Cruciate Ligament Rupture and Osteoarthritis. The American Journal of Sports Medicine 49 (2):391–403. doi:10.1177/0363546520977505.
  • Bucknall, T. E., L. Teare, and H. Ellis. 1983. The choice of a suture to close abdominal incisions. European Surgical Research 15 (2):59–66. doi:10.1159/000128334.
  • Cai, C., C. Chen, G. Chen, F. Wang, L. Guo, L. Yin, D. Feng, and L. Yang. 2013. Type I collagen and polyvinyl alcohol blend fiber scaffold for anterior cruciate ligament reconstruction. Biomedical Materials 8 (3):035001. doi:10.1088/1748-6041/8/3/035001.
  • Cai, J., F. Wan, Q. Dong, J. Jiang, C. Ai, D. Sheng, W. Jin, X. Liu, Y. Zhi, S. Wang, et al. 2018. Silk fibroin and hydroxyapatite segmented coating enhances graft ligamentization and osseointegration processes of the polyethylene terephthalate artificial ligament in vitro and in vivo. Journal of Materials Chemistry B 6 (36):5738–49. doi:10.1039/c8tb01310a.
  • Caruso, A. B., and M. G. Dunn. 2005. Changes in mechanical properties and cellularity during long-term culture of collagen fiber ACL reconstruction scaffolds. Journal of Biomedical Materials Research: Part A 73A (4):388–97. doi:10.1002/jbm.a.30233.
  • Chalmers, P. N., N. A. Mall, M. Moric, S. L. Sherman, G. P. Paletta, B. J. Cole, and B. R. Bach Jr. 2014. Does ACL reconstruction alter natural history?: A systematic literature review of long-term outcomes. The Journal of Bone & Joint Surgery 96 (4):292–300. doi:10.2106/JBJS.L.01713.
  • Chen, J., Q. Mo, R. Sheng, A. Zhu, C. Ling, Y. Luo, A. Zhang, Z. Chen, Q. Yao, Z. Cai, et al. 2021. The application of human periodontal ligament stem cells and biomimetic silk scaffold for in situ tendon regeneration. Stem Cell Research & Therapy 12 (1):596. doi:10.1186/s13287-021-02661-7.
  • Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, and E. Horwitz. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8 (4):315–17. doi:10.1080/14653240600855905.
  • Dong, Q., J. Cai, H. Wang, S. Chen, Y. Liu, J. Yao, Z. Shao, and X. Chen. 2020. Artificial ligament made from silk protein/Laponite hybrid fibers. Acta biomaterialia 106 (106):102–13. doi:10.1016/j.actbio.2020.01.045.
  • Dunn, M. G., J. B. Liesch, M. L. Tiku, and J. P. Zawadsky. 1995. Development of fibroblast-seeded ligament analogs for ACL reconstruction. Journal of Biomedical Materials Research 29 (11):1363–71. doi:10.1002/jbm.820291107.
  • Dustmann, M., T. Schmidt, I. Gangey, F. N. Unterhauser, A. Weiler, and S. U. Scheffler. 2008. The extracellular remodeling of free-soft-tissue autografts and allografts for reconstruction of the anterior cruciate ligament: A comparison study in a sheep model. Knee Surgery, Sports Traumatology, Arthroscopy 16 (4):360–69. doi:10.1007/s00167-007-0471-0.
  • Embree, M. C., M. Chen, S. Pylawka, D. Kong, G. M. Iwaoka, I. Kalajzic, H. Yao, C. Shi, D. Sun, T. J. Sheu, et al. 2016. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury. Nature communications 7 (1):13073. doi:10.1038/ncomms13073.
  • Fazal, N., and N. Latief. 2018. Bombyx mori derived scaffolds and their use in cartilage regeneration: A systematic review. Osteoarthritis and Cartilage 26 (12):1583–94. doi:10.1016/j.joca.2018.07.009.
  • Ficek, K., J. Rajca, M. Stolarz, E. Stodolak-Zych, J. Wieczorek, M. Muzalewska, M. Wyleżoł, Z. Wróbel, M. Binkowski, and S. Błażewicz. 2019. Bioresorbable Stent in Anterior Cruciate Ligament Reconstruction. Polymers (Basel) 11 (12):1961. doi:10.3390/polym11121961.
  • Frank, C. B., and D. W. Jackson. 1997. Current Concepts Review - the Science of Reconstruction of the Anterior Cruciate Ligament. The Journal of Bone & Joint Surgery 79 (10):1556–76. doi:10.2106/00004623-199710000-00014.
  • Greenwald, D., S. Shumway, P. Albear, and L. Gottlieb. 1994. Mechanical comparison of 10 suture materials before and after in vivo incubation. The Journal of Surgical Research 56 (4):372–77. doi:10.1006/jsre.1994.1058.
  • Han, F., P. Zhang, T. Chen, C. Lin, X. Wen, and P. Zhao. 2019. A LbL-Assembled Bioactive Coating Modified Nanofibrous Membrane for Rapid Tendon-Bone Healing in ACL Reconstruction. International Journal of Nanomedicine 14 (14):9159–72. doi:10.2147/IJN.S214359.
  • Herzog, M. M., S. W. Marshall, J. L. Lund, V. Pate, C. D. Mack, and J. T. Spang. 2018. Trends in Incidence of ACL Reconstruction and Concomitant Procedures Among Commercially Insured Individuals in the United States, 2002-2014. Sports Health 10 (6):523–31. doi:10.1177/1941738118803616.
  • Holland, C., K. Numata, J. Rnjak-Kovacina, and F. P. Seib. 2019. The Biomedical Use of Silk: Past, Present, Future. Advanced Healthcare Materials 8 (1):e1800465. doi:10.1002/adhm.201800465.
  • Hou, Z., S. Meyer, N. E. Propson, J. Nie, P. Jiang, R. Stewart, and J. A. Thomson. 2015. Characterization and target identification of a DNA aptamer that labels pluripotent stem cells. Cell Research 25 (3):390–93. doi:10.1038/cr.2015.7.
  • Hunt, P., S. U. Scheffler, F. N. Unterhauser, and A. Weiler. 2005. A model of soft-tissue graft anterior cruciate ligament reconstruction in sheep. Archives of Orthopaedic and Trauma Surgery 125 (4):238–48. doi:10.1007/s00402-004-0643-z.
  • Hu, Y., J. Ran, Z. Zheng, Z. Jin, X. Chen, Z. Yin, C. Tang, Y. Chen, J. Huang, H. Le, et al. 2018. Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration. Acta biomaterialia 71 (71):168–83. doi:10.1016/j.actbio.2018.02.019.
  • Hu, X., Y. Wang, Y. Tan, J. Wang, H. Liu, Y. Wang, S. Yang, M. Shi, S. Zhao, Y. Zhang, et al. 2017. A Difunctional Regeneration Scaffold for Knee Repair based on Aptamer-Directed Cell Recruitment. Advanced Materials 29 (15):1605235. doi:10.1002/adma.201605235.
  • Koob, T. J., T. A. Willis, Y. S. Qiu, and D. J. Hernandez. 2001. Biocompatibility of NDGA-polymerized collagen fibers. II. Attachment, proliferation, and migration of tendon fibroblasts in vitro. Journal of Biomedical Materials Research: An Official Journal of the Society for Biomaterials, the Japanese Society for Biomaterials, and the Australian Society for Biomaterials and the Korean Society for Biomaterials 56 (1):40–48. doi:10.1002/1097-4636(200107)56:1<40:aid-jbm1066>3.0.co;2-i.
  • Kurosaki, S., H. Otsuka, M. Kunitomo, M. Koyama, R. Pawankar, and K. Matumoto. 1999. Fibroin allergy. IgE mediated hypersensitivity to silk suture materials. Nihon Ika Daigaku zasshi 66 (1):41–44. doi:10.1272/jnms.66.41.
  • Laitinen, O., T. Pohjonen, P. Tormala, K. Saarelainen, J. Vasenius, P. Rokkanen, and S. Vainionpaa. 1993. Mechanical properties of biodegradable poly-L-lactide ligament augmentation device in experimental anterior cruciate ligament reconstruction. Archives of Orthopaedic and Trauma Surgery 112 (6):270–74. doi:10.1007/BF00452963.
  • Leong, N. L., F. A. Petrigliano, and D. R. McAllister. 2014. Current tissue engineering strategies in anterior cruciate ligament reconstruction. Journal of Biomedical Materials Research: Part A 102 (5):1614–24. doi:10.1002/jbm.a.34820.
  • Li, M., M. Ogiso, and N. Minoura. 2003. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 24 (2):357–65. doi:10.1016/s0142-9612(02)00326-5.
  • Li, H., Z. Yao, J. Jiang, Y. Hua, J. Chen, Y. Li, K. Gao, and S. Chen. 2012. Biologic failure of a ligament advanced reinforcement system artificial ligament in anterior cruciate ligament reconstruction: A report of serious knee synovitis. Arthroscopy 28 (4):583–86. doi:10.1016/j.arthro.2011.12.008.
  • Mayr, H. O., A. Stoehr, M. Dietrich, R. von Eisenhart-Rothe, R. Hube, S. Senger, N. P. Suedkamp, and A. Bernstein. 2012. Graft-dependent differences in the ligamentization process of anterior cruciate ligament grafts in a sheep trial. Knee Surgery, Sports Traumatology, Arthroscopy 20 (5):947–56. doi:10.1007/s00167-011-1678-7.
  • Nau, T. 2015. Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering. World Journal of Orthopedics 6 (1):127–36. doi:10.5312/wjo.v6.i1.127.
  • Ribeiro, V. P., J. B. Costa, and S. M. Carneiro, S. Pina, A. C. A. Veloso, R. L. Reis, J. M. Oliveira. 2022. Bioinspired Silk Fibroin-Based Composite Grafts as Bone Tunnel Fillers for Anterior Cruciate Ligament Reconstruction. Pharmaceutics 14 (4):697. doi:10.3390/pharmaceutics14040697.
  • Sahoo, S., S. L. Toh, and J. C. Goh. 2010. A bFGF-releasing silk/plga-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials 31 (11):2990–98. doi:10.1016/j.biomaterials.2010.01.004.
  • Salthouse, T. N., B. F. Matlaga, and M. H. Wykoff. 1977. Comparative tissue response to six suture materials in rabbit cornea, sclera, and ocular muscle. American Journal of Ophthalmology 84 (2):224–33. doi:10.1016/0002-9394(77)90856-x.
  • Schindler, O. S. 2012. Surgery for anterior cruciate ligament deficiency: A historical perspective. Knee Surgery, Sports Traumatology, Arthroscopy 20 (1):5–47. doi:10.1007/s00167-011-1756-x.
  • Soong, H. K., and K. R. Kenyon. 1984. Adverse reactions to virgin silk sutures in cataract surgery. Ophthalmology 91 (5):479–83. doi:10.1016/s0161-6420(84)34273-7.
  • Teuschl, A., P. Heimel, S. Nurnberger, M. van Griensven, H. Redl, and T. Nau. 2016. A Novel Silk Fiber–Based Scaffold for Regeneration of the Anterior Cruciate Ligament. The American Journal of Sports Medicine 44 (6):1547–57. doi:10.1177/0363546516631954.
  • Thurber, A. E., F. G. Omenetto, and D. L. Kaplan. 2015. In vivo bioresponses to silk proteins. Biomaterials 71 (71):145–57. doi:10.1016/j.biomaterials.2015.08.039.
  • Valluzzi, R., S. Winkler, D. Wilson, D. L. Kaplan, A. J. Bailey, J. Macmillan, P. R. Shrewry, and A. S. Tatham. 2002. Silk: Molecular organization and control of assembly. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences no. 357 (1418):165–67. doi:10.1098/rstb.2001.1032.
  • Vavken, P., and M. M. Murray. 2010. Translational studies in anterior cruciate ligament repair. Tissue Engineering: Part B, Reviews 16 (1):5–11. doi:10.1089/ten.teb.2009.0147.
  • Wang, X., X. Song, T. Li, J. Chen, G. Cheng, L. Yang, and C. Chen. 2019. Aptamer-Functionalized Bioscaffold Enhances Cartilage Repair by Improving Stem Cell Recruitment in Osteochondral Defects of Rabbit Knees. The American Journal of Sports Medicine 47 (10):2316–26. doi:10.1177/0363546519856355.
  • Weiler, A., R. F. G. Hoffmann, H. J. Bail, O. Rehm, and N. P. Sudkamp. 2002. Tendon healing in a bone tunnel. Part II: Histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy: The Journal of Arthroscopic & Related Surgery 18 (2):124–35. doi:10.1053/jars.2002.30657.
  • Yodmuang, S., S. L. McNamara, A. B. Nover, B. B. Mandal, M. Agarwal, T.A.N. Kelly, P.H.G. Chao, C. Hung, D. L. Kaplan, and G. Vunjak-Novakovic. 2015. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta biomaterialia 11 (11):27–36. doi:10.1016/j.actbio.2014.09.032.
  • Zhang, W., L. Chen, J. Chen, L. Wang, X. Gui, J. Ran, G. Xu, H. Zhao, M. Zeng, J. Ji, et al. 2017. Silk Fibroin Biomaterial Shows Safe and Effective Wound Healing in Animal Models and a Randomized Controlled Clinical Trial. Advanced Healthcare Materials 6 (10):1700121. doi:10.1002/adhm.201700121.
  • Zhu, G., and X. Chen. 2018. Aptamer-based targeted therapy. Advanced Drug Delivery Reviews 134 (134):65–78. doi:10.1016/j.addr.2018.08.005.