813
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Development of Prediction System for Shade Change Variations in Dyed Cotton Fabric After Application of Water Repellent Finishes

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdel-Hamied, M. R., S. ElKateb, and A. El-Geiheini. 2021. Analytical study of factors affecting yarn coefficient of mass variation estimated by artificial neural networks. Journal of Fiber Bioengineering and Informatics 14 (1):13–14. doi:10.3993/jfbim00345.
  • Balcı, O., and R. T. Oğulata. 2009. Prediction of the changes on the cielab values of fabric after chemical finishing using artificial neural network and linear regression models. Fibers and Polymers 10 3 :384–93. doi:10.1007/s12221-009-0384-2.
  • Beltran, R., L. Wang, and X. Wang. 2004. Predicting worsted spinning performance with an artificial neural network model. Textile Research Journal 74 (9):757–63. doi:10.1177/004051750407400902.
  • Bhattacharjee, D., and V. K. Kothari. 2007. A neural network system for prediction of thermal resistance of textile fabrics. Textile Research Journal 77 (1):4–12. doi:10.1177/0040517506070065.
  • Çelik, N., H. İ. İ̇çoğlu, and P. Erdal. 2011. Effect of the particle size of fluorocarbon‐based finishing agents on fastness and color properties of 100% cotton knitted fabrics. The Journal of the Textile Institute 102 (6):483–90. doi:10.1080/00405000.2010.489743.
  • Chakraborty, A., P. D. Kaur, and J. Chakraborty. 2019. Automation in colouration technology to predict dyeing parameters for desired shade and fastness. Indian Journal of Fibre & Textile Research 44:450–58.
  • Cheng, L., and D. L. Adams. 1995. Yarn strength prediction using neural networks: Part i: Fiber properties and yarn strength relationship. Textile Research Journal 65 (9):495–500. doi:10.1177/004051759506500901.
  • Daneshvar, N., A. Khataee, and N. Djafarzadeh. 2006. The use of artificial neural networks (ann) for modeling of decolorization of textile dye solution containing ci basic yellow 28 by electrocoagulation process. Journal of Hazardous Materials 137 (3):1788–95. doi:10.1016/j.jhazmat.2006.05.042.
  • Da Silva, I. N., D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves. 2017. Artificial neural network architectures and training processes. In Artificial neural networks, 21–28. Switzerland: Springer International Publishing.
  • Değirmenci, Z., and M. Topalbekiroğlu. 2010. Effects of weight, dyeing and the twist direction on the spirality of single jersey fabrics. Fibres & Textiles in Eastern Europe 18:81–85.
  • Eyupoglu, C., S. Eyupoglu, and N. Merdan. 2022. Investigation of dyeing properties of mohair fiber dyed with natural dyes obtained from candelariella reflexa. Journal of Natural Fibers 19 (16):1–20. doi:10.1080/15440478.2022.2076273.
  • Farooq, A., F. Irshad, R. Azeemi, and N. Iqbal. 2021. Prognosticating the shade change after softener application using artificial neural networks. AUTEX Research Journal 21 (1):79–84. doi:10.2478/aut-2020-0019.
  • Farooq, A., F. Irshad, R. Azeemi, M. Nadeem, and U. Nasir. 2021. Development of shade prediction system to quantify the shade change after crease recovery finish application using artificial neural networks. The Journal of the Textile Institute 112 (8):1287–94. doi:10.1080/00405000.2020.1812921.
  • Haugeland, J. 1989. Artificial intelligence: The very idea. United States: MIT press.
  • Jawahar, M., C. B. Narasimhan Kannan, and M. Kondamudi Manobhai. 2015. Artificial neural networks for colour prediction in leather dyeing on the basis of a tristimulus system. Coloration Technology 131 (1):48–57. doi:10.1111/cote.12123.
  • Jayalakshmi, T., and A. Santhakumaran. 2011. Statistical normalization and back propagation for classification. International Journal of Computer Theory and Engineering 3:1793–8201. doi:10.7763/IJCTE.2011.V3.288.
  • Kahani, M., M. H. Ahmadi, A. Tatar, and M. Sadeghzadeh. 2018. Development of multilayer perceptron artificial neural network (mlp-ann) and least square support vector machine (lssvm) models to predict nusselt number and pressure drop of tio2/water nanofluid flows through non-straight pathways. Numerical Heat Transfer, Part A: Applications 74 (4):1190–206. doi:10.1080/10407782.2018.1523597.
  • Ke, G., W. Yu, and W. Xu. 2006. Color evaluation of wool fabric dyed with rhizoma coptidis extract. Journal of Applied Polymer Science 101 (5):3376–3380. doi:10.1002/app.24033.
  • Liang, Z. 1996. Color matching method and apparatus. Alexandria, USA: United States Patent.
  • Lim, J., S. Jeong, S. Lim, H. Cho, J. Y. Shim, S. I. Hong, S. C. Kwon, H. Lee, I. Moon, and J. Kim. 2022. Development of dye exhaustion behavior prediction model using deep neural network. In Computer aided chemical engineering, ed.Y. Yamashita, and M. Kano, 1825–1830. Amsterdam, Netherlands: Elsevier.
  • Majumdar, A., P. K. Majumdar, and B. Sarkar. 2004. Selecting cotton bales by spinning consistency index and micronaire using artificial neural networks. AUTEX Research Journal 4:1–8.
  • Mitchell, R., J. Michalski, and T. Carbonell. 2013. An artificial intelligence approach. Heidelberg: Springer Berlin.
  • Mozafary Shamsi, V. 2021. Predicting of spun yarns properties in worsted spinning by using hybrid supervised and unsupervised neural network. Soft Computing Journal 2:62–73.
  • Parvinzadeh, M., and H. Najafi. 2008. Textile softeners on cotton dyed with direct dyes: Reflectance and fastness assessments. Tenside Surfactants Detergents 45 (1):13–16. doi:10.3139/113.100357.
  • Rahwan, I., and G. R. Simari. 2009. Argumentation in artificial intelligence, Vol. 47. New York: Springer.
  • Smits, J., W. Melssen, L. Buydens, and G. Kateman. 1994. Using artificial neural networks for solving chemical problems: Part i. Multi-layer feed-forward networks. Chemometrics and Intelligent Laboratory Systems 22 (2):165–89. doi:10.1016/0169-7439(93)E0035-3.
  • Sola, J., and J. Sevilla. 1997. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Transactions on Nuclear Science 44 (3):1464–68. doi:10.1109/23.589532.
  • Tomasino, C. 1992. Chemistry & technology of fabric preparation & finishing. Raleigh, North Carolina: North Carolina State University.
  • Tsoutseos, A., J. Nobbs, and C. Boussias. 1999. Methods of improving the colour match prediction in textile dyeing using novel colour appearance models and neural networks. Paper read at 3rd International Conference. Gent, Belgium.
  • Ulug, M. E. 1995a. Artificial neural network method and architecture. United States Patent. Alexandria, USA.
  • Ulug, M. E. 1995b. Artificial neural network method and architecture adaptive signal filtering. United States Patent. Alexandria, USA.
  • Vadood, M., and A. Haji. 2022. A hybrid artificial intelligence model to predict the color coordinates of polyester fabric dyed with madder natural dye. Expert Systems with Applications 193:116514. doi:10.1016/j.eswa.2022.116514.
  • Van Nguyen, T. H., T. T. Nguyen, X. Ji, and M. Guo. 2018. Predicting color change in wood during heat treatment using an artificial neural network model. BioResources 13 (3):6250–64. doi:10.15376/biores.13.3.6250-6264.
  • Zhu, R., and M. Ethridge. 1996. The prediction of cotton yarn irregularity based on the ‘afis’measurement. The Journal of the Textile Institute 87 (3):509–12. doi:10.1080/00405009608631352.