1,288
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Characterization Studies on New Cellulosic Fiber Extracted from Leucaena Leucocephala Tree

ORCID Icon, & ORCID Icon

References

  • Arthanarieswaran, V. P., A. Kumaravel, and S. S. Saravanakumar. 2015. Characterization of new natural cellulosic fiber from acacia leucophloea bark. International Journal of Polymer Analysis and Characterization 20 (4):367–16. Taylor & Francis. doi:10.1080/1023666X.2015.1018737.
  • Azeez, T. O., D. O. Okechukwu Onukwuli, J. T. Tagbo Nwabanne, and A. T. Tamunonengiofori Banigo. 2020. Cissus populnea fiber - unsaturated polyester composites: Mechanical properties and interfacial adhesion. Journal of Natural Fibers 17 (9):1281–94. Taylor & Francis. doi:10.1080/15440478.2018.1558159.
  • Baskaran, P. G., M. Kathiresan, P. Senthamaraikannan, and S. S. Saravanakumar. 2018. Characterization of new natural cellulosic fiber from the bark of dichrostachys cinerea. Journal of Natural Fibers 15 (1):62–68. Taylor & Francis. doi:10.1080/15440478.2017.1304314.
  • Belouadah, Z., L. Toubal, N. Belhaneche-Bensemra, and A. Ati. 2021. Characterization of ligno-cellulosic fiber extracted from atriplex Halimus L. plant. International Journal of Biological Macromolecules 168 (January):806–15. doi:10.1016/j.ijbiomac.2020.11.142.
  • Bezazi, A., A. Belaadi, M. Bourchak, F. Scarpa, and K. Boba. 2014. Novel extraction techniques, chemical and mechanical characterisation of agave Americana L. natural fibres. Composites Part B: Engineering 66 (November):194–203. doi:10.1016/j.compositesb.2014.05.014.
  • Burleigh, J. R., and C. F. Yamoah. 1997. Site factors associated with the performance of Leucaena Leucocephala (Lam.) de wit and Sesbania Sesban (L.) merill in pure and mixed stands in the northern highlands of Rwanda. Agroforestry Systems 37 (2):121–31. doi:10.1023/A:1005861821739.
  • Chaturvedi, A. N. 1985. Biomass production on Saline-Alkalinesoils. Nitrogen Fixing Tree Research Reports 3:7–8.
  • Cheng, D., B. Weng, Y. Chen, S. Zhai, C. Wang, R. Xu, J. Guo, Y. Lv, L. Shi, and Y. Guo. 2020. Characterization of potential cellulose fiber from Luffa Vine: A study on physicochemical and structural properties. International Journal of Biological Macromolecules 164 (December):2247–57. doi:10.1016/j.ijbiomac.2020.08.098.
  • Conrad, C. M. 1944, May 1. Determination of wax in cotton fiber a new alcohol extraction method. Research-Article American Chemical Society World. doi:10.1021/i560136a007.
  • Díaz, M. J., M. M. García, M. E. Eugenio, R. Tapias, M. Fernández, and F. López. 2007. Variations in fiber length and some pulp chemical properties of Leucaena varieties. Industrial Crops and Products 26 (2):142–50. doi:10.1016/j.indcrop.2007.02.003.
  • Djafari Petroudy, S. R. 2017. Physical and mechanical properties of natural fibers. In Advanced high strength natural fibre composites in construction, ed. M. Fan and F. Fu, 59–83. Woodhead Publishing. doi:10.1016/B978-0-08-100411-1.00003-0.
  • Fan, M., and F. Feng. 2016. Advanced high strength natural fibre composites in construction. Woodhead Publishing.
  • Gopinath, R., P. Billigraham, and T. P. Sathishkumar. 2021. Investigation of physico-chemical, mechanical, and thermal properties of new cellulosic bast fiber extracted from the bark of Bauhinia Purpurea. Journal of Natural Fibers 0 (0):1–18. Taylor & Francis. doi:10.1080/15440478.2021.1990180.
  • Gopinath, R., K. Ganesan, S. S. Saravanakumar, and R. Poopathi. 2016. Characterization of new cellulosic fiber from the stem of Sida Rhombifolia. International Journal of Polymer Analysis and Characterization 21 (2):123–29. Taylor & Francis. doi:10.1080/1023666X.2016.1117712.
  • Hamideh, H., M. Sain, and L. H. Mei. 2014. Modification and characterization of Hemp and Sisal fibers. Journal of Natural Fibers 11 (2):144–68. Taylor & Francis. doi:10.1080/15440478.2013.861779.
  • Indran, S., and R. Edwin Raj. 2015. Characterization of new natural cellulosic fiber from Cissus Quadrangularis stem. Carbohydrate Polymers 117 (March):392–99. doi:10.1016/j.carbpol.2014.09.072.
  • Ishak, M. R., Z. Leman, S. M. Sapuan, A. M. M. Edeerozey, and I. S. Othman. 2010, May. Mechanical properties of Kenaf Bast and Core Fibre reinforced unsaturated polyester composites. IOP Conference Series: Materials Science and Engineering, 11, 012006. IOP Publishing. doi:10.1088/1757-899X/11/1/012006.
  • Janusz, G., A. Pawlik, J. Sulej, U. Świderska-Burek, A. Jarosz-Wilkołazka, and A. Paszczyński. 2017. Lignin degradation: Microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiology Reviews 41 (6):941–62. doi:10.1093/femsre/fux049.
  • Jawaid, M., and H. P. S. Abdul Khalil. 2011. Cellulosic/Synthetic fibre reinforced polymer hybrid composites: A Review. Carbohydrate Polymers 86 (1):1–18. doi:10.1016/j.carbpol.2011.04.043.
  • Jayaramudu, J., B. R. Guduri, and A. Varada Rajulu. 2010. Characterization of new natural cellulosic fabric Grewia Tilifolia. Carbohydrate Polymers 79 (4):847–51. doi:10.1016/j.carbpol.2009.10.046.
  • John, M. J., and S. Thomas. 2008. Biofibres and Biocomposites. Carbohydrate Polymers 71 (3):343–64. doi:10.1016/j.carbpol.2007.05.040.
  • Karimah, A., M. R. Rasyidur Ridho, S. S. Sofyan Munawar, D. S. Sudarwoko Adi, I. Ismadi, R. Damayanti, B. Subiyanto, W. Fatriasari, and A. Fudholi. 2021. A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations. Journal of Materials Research and Technology 13 (July):2442–58. doi:10.1016/j.jmrt.2021.06.014.
  • Khan, A., V. Vijay Raghunathan, D. L. Singaravelu, M. R. Sanjay, S. Siengchin, M. Jawaid, K. A. Alamry, and A. M. Asiri. 2020, August. Extraction and characterization of cellulose fibers from the stem of Momordica Charantia. Journal of Natural Fibers 19(6):1–11. doi: 10.1080/15440478.2020.1807442.
  • Komuraiah, A., N. Shyam Kumar, and B. Durga Prasad. 2014. Chemical composition of natural fibers and its influence on their mechanical properties. Mechanics of Composite Materials 50 (3):359–76. doi:10.1007/s11029-014-9422-2.
  • Kumar, R., N. Rajesh Jesudoss Hynes, P. Senthamaraikannan, S. Saravanakumar, and M. R. Sanjay. 2018. Physicochemical and thermal properties of Ceiba Pentandra bark fiber. Journal of Natural Fibers 15 (6):822–29. doi:10.1080/15440478.2017.1369208.
  • Kumar, R., S. Sivaganesan, P. Senthamaraikannan, S. S. Saravanakumar, A. Khan, S. Ajith Arul Daniel, and L. Loganathan. 2020, March. Characterization of new cellulosic fiber from the bark of Acacia Nilotica L. plant. Journal of Natural Fibers 19(1):1–10. doi: 10.1080/15440478.2020.1738305.
  • Kurschner, K., A. Hoffer, S. H. Jenkins, W. Vieweg, O. Schwarzkopf, W. Schramek, C. Schubert, H. Velten, K. Hess, C. Trogus, et al. 1993. Cellulose and cellulose derivative. Zeitschrift für Analytische Chemie 92 (3–4):145–54. doi:10.1007/BF01354736.
  • Li, M., Y. Pu, V. M. Thomas, C. G. Geun Yoo, S. Ozcan, Y. Deng, K. Nelson, and A. J. Ragauskas. 2020. Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering 200 (November):108254. doi:10.1016/j.compositesb.2020.108254.
  • Li, X., L. G. Tabil, and S. Panigrahi. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment 15 (1):25–33. doi:10.1007/s10924-006-0042-3.
  • Liu, Y., and H. -J. Kim. 2017. Fourier transform infrared spectroscopy (FT-IR) and simple algorithm analysis for rapid and non-destructive assessment of developmental cotton fibers. Sensors 17 (7):7. Multidisciplinary Digital Publishing Institute: 1469. doi:10.3390/s17071469.
  • Maache, M., A. Bezazi, S. Amroune, F. Scarpa, and A. Dufresne. 2017. Characterization of a novel natural cellulosic fiber from Juncus Effusus L. Carbohydrate Polymers 171 (September):163–72. doi:10.1016/j.carbpol.2017.04.096.
  • Manimaran, S. P. S., and M. Prithiviraj. 2019, June. Investigation of physico chemical properties and characterization of new natural cellulosic fibers from the bark of Ficus Racemosa. Journal of Natural Fibers 18(2):1–11. doi: 10.1080/15440478.2019.1621233.
  • Manimaran, P., M. R. Sanjay, P. Senthamaraikannan, S. S. Saravanakumar, S. Siengchin, G. Pitchayyapillai, and A. Khan. 2019. Physico-chemical properties of fiber extracted from the flower of Celosia Argentea plant. Journal of Natural Fibers 18 (3):464–73. Taylor & Francis. doi:10.1080/15440478.2019.1629149.
  • Manimaran, P., M. R. Sanjay, P. Senthamaraikannan, B. Yogesha, C. Barile, and S. Siengchin. 2020. A new study on characterization of Pithecellobium Dulce fiber as composite reinforcement for light-weight applications. Journal of Natural Fibers 17 (3):359–70. Taylor & Francis. doi:10.1080/15440478.2018.1492491.
  • Manimaran, M. P., S. S. Saravanakumar, V. P. Arthanarieswaran, and P. Senthamaraikannan. 2018. Physicochemical, tensile, and thermal characterization of new natural cellulosic fibers from the stems of Sida Cordifolia. Journal of Natural Fibers 15 (6):860–69. doi:10.1080/15440478.2017.1376301.
  • Manimaran, P., K. Solai Senthil Kumar, and M. Prithiviraj. 2019, November. Investigation of physico chemical, mechanical and thermal properties of the Albizia Lebbeck bark fibers. Journal of Natural Fibers 18(8):1–12. doi: 10.1080/15440478.2019.1687068.
  • Mayandi, K., N. Rajini, P. Pitchipoo, J. T. Winowlin Jappes, and A. Varada Rajulu. 2016. Extraction and characterization of new natural Lignocellulosic Fiber Cyperus Pangorei. International Journal of Polymer Analysis and Characterization 21 (2):175–83. doi:10.1080/1023666X.2016.1132064.
  • Patel, U., R. Ray, A. Mohapatra, S. N. Narayan Das, and H. C. Chandra Das. 2020. Effect of different chemical treatments on surface morphology, thermal and tensile strength of Bauhinia Vahlii (BV) stem fibers. Journal of Natural Fibers 19 (1):1–12. Taylor & Francis. doi:10.1080/15440478.2020.1739591.
  • Poletto, M., H. L. Ornaghi, and A. J. Zattera. 2014. Native cellulose: Structure, characterization and thermal properties. Materials 7 (9):6105–19. Multidisciplinary Digital Publishing Institute. doi:10.3390/ma7096105.
  • Pramod, S., K. S. Rao, and A. Sundberg. 2013. Structural, histochemical and chemical characterization of normal, tension and opposite wood of Subabul (Leucaena Leucocephala (Lam.) De Wit.). Wood Science and Technology 47 (4):777–96. doi:10.1007/s00226-013-0528-9.
  • Raghavendra, G., S. A. Shakuntala Ojha, S. K. Acharya, and S. K. Pal. 2014. Jute fiber reinforced epoxy composites and comparison with the Glass and Neat Epoxy composites. Journal of Composite Materials 48 (20):2537–47. SAGE Publications Ltd STM. doi:10.1177/0021998313499955.
  • Samanta, A. K., A. Mukhopadhyay, and S. Kumar Ghosh. 2020. 2 - processing of jute fibres and its applications. In Handbook of natural fibres, 2nd ed. R. M. Kozłowski and M. Mackiewicz-Talarczyk, 49–120. The Textile Institute Book Series. Woodhead Publishing. doi: 10.1016/B978-0-12-818782-1.00002-X.
  • Sanjay, M. R., G. R. Arpitha, and B. Yogesha. 2015. Study on mechanical properties of natural - glass fibre reinforced polymer hybrid composites: A review. Materials Today: Proceedings 2 (4):2959–67. doi:10.1016/j.matpr.2015.07.264.
  • Saravana Kumaar, A., A. Senthilkumar, T. Sornakumar, S. S. Saravanakumar, and V. P. Arthanariesewaran. 2019. Physicochemical properties of new cellulosic fiber extracted from Carica Papaya Bark. Journal of Natural Fibers 16 (2):175–84. doi:10.1080/15440478.2017.1410514.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, and I. Ganesh Moorthy. 2014. Investigation of physico-chemical properties of Alkali-treated Prosopis Juliflora fibers. International Journal of Polymer Analysis and Characterization 19 (4):309–17. Taylor & Francis. doi:10.1080/1023666X.2014.902527.
  • Saravanakumar, S. S., A. Kumaravel, T. Nagarajan, P. Sudhakar, and R. Baskaran. 2013. Characterization of a novel natural cellulosic fiber from Prosopis Juliflora Bark. Carbohydrate polymers 92 (2):1928–33. doi:10.1016/j.carbpol.2012.11.064.
  • Sarikanat, M., Y. Seki, K. Sever, and C. Durmuşkahya. 2014. Determination of properties of Althaea Officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Composites Part B: Engineering 57 (February):180–86. doi:10.1016/j.compositesb.2013.09.041.
  • Seki, Y., M. Sarikanat, K. Sever, and C. Durmuşkahya. 2013. Extraction and properties of Ferula Communis (Chakshir) fibers as novel reinforcement for composites materials. Composites Part B: Engineering 44 (1):517–23. doi:10.1016/j.compositesb.2012.03.013.
  • Senthamaraikannan, P., S. S. Saravanakumar, V. P. Arthanarieswaran, and P. Sugumaran. 2016. Physico-chemical properties of new cellulosic fibers from the bark of Acacia Planifrons. International Journal of Polymer Analysis and Characterization 21 (3):207–13. doi:10.1080/1023666X.2016.1133138.
  • Shaker, K., R. M. Muhammad Waseem Ullah Khan, M. Jabbar, M. Umair, A. Tariq, M. Kashif, and Y. Nawab. 2020. Extraction and characterization of novel fibers from Vernonia Elaeagnifolia as a potential textile fiber. Industrial Crops and Products 152 (September):112518. doi:10.1016/j.indcrop.2020.112518.
  • Siva, R., T. N. Valarmathi, K. Palanikumar, and A. V. Samrot. 2020. Study on a novel natural cellulosic fiber from Kigelia Africana Fruit: Characterization and analysis. Carbohydrate polymers 244 (September):116494. doi:10.1016/j.carbpol.2020.116494.
  • Sjostrom, E. 1993. Wood chemistry: Fundamentals and applications. Gulf Professional Publishing.
  • Spinacé, M. A. S., C. S. Lambert, K. K. G. Fermoselli, and M. -A. De Paoli. 2009. Characterization of Lignocellulosic Curaua Fibres. Carbohydrate Polymers 77 (1):47–53. doi:10.1016/j.carbpol.2008.12.005.
  • Sreenivasan, V. S., S. Somasundaram, D. Ravindran, V. Manikandan, and R. Narayanasamy. 2011. Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres – an exploratory investigation. Materials & Design 32 (1):453–61. doi:10.1016/j.matdes.2010.06.004.
  • Sudhir Chakravarthy, S. C., M. S, J. Siva Naga Raju, and J. S. Md. 2020. Characterization of novel natural cellulosic fiber extracted from the stem of Cissus Vitiginea Plant. International Journal of Biological Macromolecules 161 (October):1358–70. doi:10.1016/j.ijbiomac.2020.07.230.
  • Thakur, V. K., and M. K. Kumari Thakur. 2014. Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers 109 (August):102–17. doi:10.1016/j.carbpol.2014.03.039.
  • Venkatachalam, N., P. Navaneethakrishnan, and T. Sathishkumar. 2016, December. Characterization of novel Passiflora Foetida natural fibers for paper board industry. Journal of Industrial Textiles 152808371668292. doi:10.1177/1528083716682923.
  • Venugopal, A., and S. Kumar Boominathan. 2020. Physico-chemical, thermal and tensile properties of Alkali-Treated Acacia Concinna fiber. Journal of Natural Fibers 0 (0):1–16. Taylor & Francis. doi:10.1080/15440478.2020.1838998.
  • Vignesh, V., A. N. Balaji, and M. K. V. Karthikeyan. 2016. Extraction and characterization of new cellulosic fibers from Indian mallow stem: An exploratory investigation. International Journal of Polymer Analysis and Characterization 21 (6):504–12. doi:10.1080/1023666X.2016.1175206.
  • Vinod, A., R. Vijay, D. Lenin Singaravelu, M. R. Sanjay, S. Suchart Siengchin, Y. Yagnaraj, and S. Khan. 2019, September. Extraction and characterization of natural fiber from stem of Cardiospermum Halicababum. Journal of Natural Fibers 18(6):1–11. doi: 10.1080/15440478.2019.1669514.
  • Yoganandam, K., P. Ganeshan, B. NagarajaGanesh, and K. Raja. 2020. Characterization studies on Calotropis Procera fibers and their performance as reinforcements in epoxy matrix. Journal of Natural Fibers 17 (12):1706–18. Taylor & Francis. doi:10.1080/15440478.2019.1588831.
  • Zhou, X., H. Saini, and G. Kastiukas. 2017. Engineering properties of treated natural hemp fiber-reinforced concrete. Frontiers in Built Environment 3:33. doi:10.3389/fbuil.2017.00033.