3,204
Views
9
CrossRef citations to date
0
Altmetric
Review

Biodegradable Hybrid Polymer Film for Packaging: A Review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abugoch, L. E., C. Tapia, M. C. Villamán, M. Yazdani-Pedram, and M. Díaz-Dosque. 2011. Characterization of quinoa protein-chitosan blend edible films. Food Hydrocolloids 25 (5):879–22. Elsevier Ltd. doi:10.1016/j.foodhyd.2010.08.008.
  • Aider, M. 2010. Chitosan application for active bio-based films production and potential in the food industry: review. LWT - Food Science and Technology 43 (6):837–42. Elsevier Ltd. doi:10.1016/j.lwt.2010.01.021.
  • Akter, N., R. A. Khan, M. O. Tuhin, M. Emdadu Haque, M. Nurnabi, F. Parvin, and R. Islam. 2014. Thermomechanical, barrier, and morphological properties of chitosan-reinforced starch-based biodegradable composite films. Journal of Thermoplastic Composite Materials 27 (7):933–48. doi:10.1177/0892705712461512.
  • Alizadeh-Sani, M., A. Khezerlou, and A. Ehsani. 2018. Fabrication and Characterization of the bionanocomposite film based on whey protein biopolymer loaded with TiO2 Nanoparticles, Cellulose Nanofibers and Rosemary Essential Oil. Industrial Crops and Products 124:300–15. doi:10.1016/j.indcrop.2018.08.001.
  • Anjum, A., M. Zuber, K. Mahmood Zia, A. Noreen, M. Naveed Anjum, and S. Tabasum. 2016. Microbial production of polyhydroxyalkanoates (phas) and its copolymers: a review of recent advancements. International Journal of Biological Macromolecules 89: 161–74. Elsevier B.V. doi:10.1016/j.ijbiomac.2016.04.069.
  • Antoniou, J., F. Liu, H. Majeed, and F. Zhong. 2015. Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study. Food Hydrocolloids 44:309–19. doi:10.1016/j.foodhyd.2014.09.023.
  • Arvanitoyannis, I., and C. G. Biliaderis. 1998. Physical properties of polyol-plasticized edible films made from sodium caseinate and soluble starch blends. Food Chemistry 62 (3):333–42. doi:10.1016/S0308-8146(97)00230-6.
  • Arvanitoyannis, I., and C. G. Biliaderis. 1999. Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch. Carbohydrate Polymers 38 (1):47–58. doi:10.1016/S0144-8617(98)00087-3.
  • Aslam, M., M. Ali Kalyar, and Z. Ali Raza. 2018. Polyvinyl Alcohol: A Review of Research Status and Use of Polyvinyl Alcohol Based Nanocomposites. Polymer Engineering and Science 58 (12):2119–32. doi:10.1002/pen.24855.
  • Avérous, L., and E. Pollet. 2012. Environmental silicate nano-biocomposites. Green Energy and Technology 50. doi:10.1007/978-1-4471-4108-2.
  • Azwa, Z. N., B. F. Yousif, A. C. Manalo, and W. Karunasena. 2013. A review on the degradability of polymeric composites based on natural fibres. Materials & Design 47:424–42. doi:10.1016/j.matdes.2012.11.025.
  • Bonilla, J., L. Atarés, M. Vargas, and A. Chiralt. 2013. Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering 114 (3):303–12. Elsevier Ltd. doi:10.1016/j.jfoodeng.2012.08.005.
  • Brinchi, L., F. Cotana, E. Fortunati, and J. Kenny. 2013. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers 94 (1):154–69. doi:10.1016/j.carbpol.2013.01.033.
  • Calva-Estrada, S. J., M. Jiménez-Fernández, and E. Lugo-Cervantes. 2019. Protein-based films: advances in the development of biomaterials applicable to food packaging. Food Engineering Reviews 11 (2):78–92. Food Engineering Reviews. doi:10.1007/s12393-019-09189-w.
  • Cao, N., X. Yang, and Y. Fu. 2009. Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocolloids 23 (3):729–35. Elsevier Ltd. doi:10.1016/j.foodhyd.2008.07.017.
  • Cazón, P., G. Velazquez, J. A. Ramírez, and M. Vázquez. 2017. Polysaccharide-based films and coatings for food packaging: Areview. Food Hydrocolloids 68:136–48. doi:10.1016/j.foodhyd.2016.09.009.
  • Choo, K., Y. Chee Ching, C. Hock Chuah, S. Julai, and N. Shang Liou. 2016. Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9 (8):1–16. doi:10.3390/ma9080644.
  • Chung, Y. L., S. Ansari, L. Estevez, S. Hayrapetyan, E. P. Giannelis, and H. Mei Lai. 2010. Preparation and properties of biodegradable starch-clay nanocomposites. Carbohydrate Polymers 79 (2):391–96. Elsevier Ltd. doi:10.1016/j.carbpol.2009.08.021.
  • Ciannamea, E. M., P. M. Stefani, and R. A. Ruseckaite. 2016. Properties and antioxidant activity of soy protein concentrate films incorporated with red grape extract processed by casting and compression molding. LWT - Food Science and Technology 74: 353–62. Elsevier Ltd. doi:10.1016/j.lwt.2016.07.073.
  • Ciencia, R., and L. Andes. 2018. An Overview of Starch-Based Biopolymers and Their Biodegradability Una Revisión Sobre Biopolímeros Con Base En Almidón y Su Biodegradabilidad. Ciencia e Ingeniería 39 (3):245–58.
  • Cinelli, P., M. Seggiani, N. Mallegni, V. Gigante, and A. Lazzeri. 2019. Processability and degradability of pha-based composites in terrestrial environments. International Journal of Molecular Sciences 20 (2). doi: 10.3390/ijms20020284.
  • De Moura, M. R., L. H. C. Mattoso, and V. Zucolotto. 2012. Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. Journal of Food Engineering 109 (3):520–24. doi:10.1016/j.jfoodeng.2011.10.030.
  • Di Franco, C. R., V. P. Cyras, J. P. Busalmen, R. A. Ruseckaite, and A. Vázquez. 2004. Degradation of Polycaprolactone/Starch Blends and composites with sisal fibre. Polymer Degradation and Stability 86 (1):95–103. doi:10.1016/j.polymdegradstab.2004.02.009.
  • Doak, K. W., and D. E. James. 1986. Ethylene Polymers. In Encyclopedia of Polymer Science and Engineering, Vol. 6, 383–490. New york: John-Wiley & Sons.
  • Edhirej, A., S. M. Sapuan, M. Jawaid, and N. Ismarrubie Zahari. 2017. Cassava/Sugar palm fiber reinforced cassava starch hybrid composites: physical, thermal and structural properties. International Journal of Biological Macromolecules 101: 75–83. Elsevier B.V. doi:10.1016/j.ijbiomac.2017.03.045.
  • El Miri, N., K. Abdelouahdi, M. Zahouily, A. Fihri, A. Barakat, A. Solhy, and M. El Achaby. 2015. Bio‐nanocomposite films based on cellulose nanocrystals filled polyvinyl alcohol/chitosan polymer blend. Journal of Applied Polymer Science 132 (22):132 (22. doi:10.1002/app.42004.
  • El-Wakil, N. A., E. A. Hassan, R. E. Abou-Zeid, and A. Dufresne. 2015. Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydrate polymers 124: 337–46. Elsevier Ltd. doi:10.1016/j.carbpol.2015.01.076.
  • Espitia, P. J. P., W. X. Du, R. de Jesús Avena-Bustillos, N. de Fátima Ferreira Soares, and T. H. McHugh. 2014. Edible films from pectin: Physical-mechanical and antimicrobial properties - a review. Food Hydrocolloids 35: 287–96. Elsevier Ltd. doi:10.1016/j.foodhyd.2013.06.005.
  • Faruk, O., A. K. Bledzki, H. Peter Fink, and M. Sain. 2012. Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science 37 (11):1552–96. Elsevier Ltd. doi:10.1016/j.progpolymsci.2012.04.003.
  • Gangil, B., L. Ranakoti, S. Verma, T. Singh, and S. Kumar. 2020. Natural and synthetic fibers for hybrid composites. Hybrid Fiber Composites 1–15. doi:10.1002/9783527824571.ch1.
  • Garavand, F., M. Rouhi, S. Hadi Razavi, I. Cacciotti, and R. Mohammadi. 2017. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. International Journal of Biological Macromolecules 104:687–707. doi:10.1016/j.ijbiomac.2017.06.093.
  • García, M. A., M. N. Martino, and N. E. Zaritzky. 2000. Lipid addition to improve barrier properties of edible starch-based films and coatings. Journal of Food Science 65 (6):941–44. doi:10.1111/j.1365-2621.2000.tb09397.x.
  • Gurunathan, T., S. Mohanty, and S. K. Nayak. 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A, Applied Science and Manufacturing 77:1–25. Elsevier Ltd. doi:10.1016/j.compositesa.2015.06.007.
  • Hadidi, M., S. Jafarzadeh, M. Forough, F. Garavand, S. Alizadeh, A. Salehabadi, A. Mousavi Khaneghah, and S. Mahdi Jafari. 2022, September. Plant protein-based food packaging films; Recent advances in fabrication, characterization, and applications. Trends in Food Science & Technology 120:154–73. ( 2021 Elsevier Ltd). doi: 10.1016/j.tifs.2022.01.013.
  • Haghighi, H., F. Licciardello, P. Fava, H. Wilhelm Siesler, and A. Pulvirenti. 2020, March. Recent advances on chitosan-based films for sustainable food packaging applications. Food Packaging and Shelf Life 26:100551. ( Elsevier). doi: 10.1016/j.fpsl.2020.100551.
  • Haldorai, Y., J. Jin Shim, and K. Taek Lim. 2012. Synthesis of polymer-inorganic filler nanocomposites in supercritical CO 2. The Journal of Supercritical Fluids 71: 45–63. Elsevier B.V. doi:10.1016/j.supflu.2012.07.007.
  • Höfer, R., and E. Ecosiris. 2012. Processing and performance additives for plastics. Polymer Science:A Comprehensive Reference 10: Elsevier B.V. doi:10.1016/B978-0-444-53349-4.00272-7.
  • Hourston, D. J. 2010. Degradation of plastics and polymers. Shreir’s Corrosion 2:2369–86. doi:10.1016/B978-044452787-5.00116-5.
  • Hulleman, S. H. D., F. H. P. Janssen, and H. Feil. 1998. The role of water during plasticization of native starches. Polymer 39 (10):2043–48. doi:10.1016/S0032-3861(97)00301-7.
  • Jafarzadeh, S., A. Karim Alias, F. Ariffin, and S. Mahmud. 2018. Physico-mechanical and microstructural properties of semolina flour films as influenced by different sorbitol/glycerol concentrations. International Journal of Food Properties 21 (1):983–95. Taylor & Francis. doi:10.1080/10942912.2018.1474056.
  • Jun Feng, S. 2017. Biodegradable soy protein isolate/poly(vinyl alcohol) packaging films. Handbook of Composites from Renewable Materials 1–8. doi:10.1002/9781119441632.ch103.
  • Kamal, M. R., and V. Khoshkava. 2015. Effect of Cellulose Nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohydrate Polymers 123: 105–14. Elsevier Ltd. doi:10.1016/j.carbpol.2015.01.012.
  • Kashiri, M., J. P. Cerisuelo, I. Domínguez, G. López-Carballo, P. Hernández-Muñoz, and R. Gavara. 2016. Novel antimicrobial zein film for controlled release of Lauroyl Arginate (LAE). Food Hydrocolloids 61: 547–54. Elsevier Ltd. doi:10.1016/j.foodhyd.2016.06.012.
  • Khalid, S., L. Yu, M. Feng, L. Meng, Y. Bai, A. Ali, H. Liu, and L. Chen. 2018, August. Development and characterization of biodegradable antimicrobial packaging fi lms based on polycaprolactone, starch and pomegranate rind hybrids. Food Packaging and Shelf Life 18:71–79. ( Elsevier). doi:10.1016/j.fpsl.2018.08.008.
  • Khan, R. A., S. Salmieri, D. Dussault, J. Uribe-Calderon, M. R. Kamal, A. Safrany, and M. Lacroix. 2010. Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. Journal of Agricultural and Food Chemistry 58 (13):7878–85. doi:10.1021/jf1006853.
  • Kumar, N., P. Kaur, and S. Bhatia. 2017. Advances in bio-nanocomposite materials for food packaging: A review. Nutrition and Food Science 47 (4):591–606. doi:10.1108/NFS-11-2016-0176.
  • Lara, B. R. B., A. C. M. A. Araújo, M. Vilela Dias, M. Guimarães, T. Amorim Santos, L. Fonseca Ferreira, and S. Vilela Borges. 2019, June. Morphological, mechanical and physical properties of new whey protein isolate/polyvinyl alcohol blends for food flexible packaging. Food Packaging and Shelf Life 19:16–23. ( 2018 Elsevier). doi: 10.1016/j.fpsl.2018.11.010.
  • Lara, B. R. B., P. S. de Andrade, M. Guimarães Junior, M. Vilela Dias, and L. Ayra Pereira Alcântara. 2021. Novel whey protein isolate/polyvinyl biocomposite for packaging: Improvement of mechanical and water barrier properties by incorporation of nano-silica. Journal of Polymers and the Environment 29 (8):2397–408. Springer US. doi:10.1007/s10924-020-02033-x.
  • Lee, C. H., S. M. Sapuan, R. A. Ilyas, S. H. Lee, and A. Khalina. 2020. Development and processing of pla, pha, and other biopolymers. In Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers, Elsevier Inc. doi:10.1016/b978-0-12-819661-8.00005-6.
  • Lee, S. H., and S. Wang. 2006. Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A, Applied Science and Manufacturing 37 (1):80–91. doi:10.1016/j.compositesa.2005.04.015.
  • Liu, F., B. Sen Chiou, R. J. Avena-Bustillos, Y. Zhang, Y. Li, T. H. McHugh, and F. Zhong. 2017. Study of combined effects of glycerol and transglutaminase on properties of gelatin films. Food Hydrocolloids 65:1–9. Elsevier Ltd. doi:10.1016/j.foodhyd.2016.10.004.
  • Lorevice, M. V., C. Gomide Otoni, M. R. de Mourra, and L. Henrique Capparelli Mattoso. 2016. Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocolloids 52: 732–40. Elsevier Ltd. doi:10.1016/j.foodhyd.2015.08.003.
  • Mahmoodi, A., S. Ghodrati, and M. Khorasani. 2019. High-strength, low-permeable, and light-protective nanocomposite films based on a hybrid nanopigment and biodegradable PLA for food packaging applications. ACS Omega 4 (12):14947–54. doi:10.1021/acsomega.9b01731.
  • Malathi, A. N., K. S. Santhosh, and N. Udaykumar. 2014. Recent Trends of Biodegradable Polymer. Current Trends in Technology and Sciences 3 (1):1–8.
  • Mármol, G., C. Gauss, and R. Fangueiro. 2020. Potential of cellulose microfibers for PHA and PLA biopolymers reinforcement. Molecules 25:20. doi:10.3390/molecules25204653.
  • Marrazzo, C., E. Di Maio, and S. Iannace. 2007. Foaming of synthetic and natural biodegradable polymers. Journal of Cellular Plastics 43 (2):123–33. doi:10.1177/0021955X06073214.
  • Mochane, M. J., T. C. Mokhena, T. H. Mokhothu, A. Mtibe, E. R. Sadiku, S. S. Ray, I. D. Ibrahim, and O. O. Daramola. 2019. Recent progress on natural fiber hybrid composites for advanced applications: A review. express polymer letters 13 (2):159–98. doi:10.3144/expresspolymlett.2019.15.
  • Modi, S., K. Koelling, and Y. Vodovotz. 2011. Assessment of PHB with varying hydroxyvalerate content for potential packaging applications. European Polymer Journal 47 (2):179–86. Elsevier Ltd. doi:10.1016/j.eurpolymj.2010.11.010.
  • Monika, P. A. K., S. M. Bhasney, P. Bhagabati, and V. Katiyar. 2018. Effect of dicumyl peroxide on a poly(Lactic Acid) (PLA)/Poly(Butylene Succinate) (PBS)/Functionalized chitosan-based nanobiocomposite for packaging: A reactive extrusion study. ACS Omega 3 (10):13298–312. doi:10.1021/acsomega.8b00907.
  • Mose, B. R., and S. Moffat Maranga. 2011. A review on starch based nanocomposites for bioplastic materials. Formerly Part of Journal of Materials Science and Engineering 1:239–45.
  • Müller, R. 2002. Biodegradability of polymers: Regulations and methods for testing. Biopolymers Online 365–74. doi:10.1002/3527600035.bpola012.
  • Müller, C. M. O., J. Borges Laurindo, and F. Yamashita. 2011. Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Industrial Crops and Products 33 (3):605–10. doi:10.1016/j.indcrop.2010.12.021.
  • Muscat, D., B. Adhikari, R. Adhikari, and D. S. Chaudhary. 2012. Comparative study of film forming behaviour of low and high amylose starches using glycerol and xylitol as plasticizers. Journal of Food Engineering 109 (2):189–201. Elsevier Ltd. doi:10.1016/j.jfoodeng.2011.10.019.
  • Mutalikdesai, S., A. Hadapad, S. Patole, and G. Hatti. 2018. Fabrication and Mechanical Characterization of Glass fibre reinforced Epoxy Hybrid Composites using Fly ash/Nano clay/Zinc oxide as filler. IOP Conference Series: Materials Science and Engineering 376:012061. doi:10.1088/1757-899X/376/1/012061.
  • Nagarajan, V., A. K. Mohanty, and M. Misra. 2016. Perspective on Polylactic Acid (PLA) Based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustainable Chemistry & Engineering 4 (6):2899–916. doi:10.1021/acssuschemeng.6b00321.
  • Nandhavathy, G., S. Periyar Selvam, M. Mahesh Kumar, and E. Rotimi Sadiku. 2017. Optimization of pomegranate peel fibers reinforced with polyvinyl alcohol biocomposite film using response surface methodology. Rasayan Journal of Chemistry 10 (2):542–48. doi:10.7324/RJC.2017.1021724.
  • Naveena, B., and A. Sharma. 2020. Review on properties of bio plastics for packaging applications and its advantages. International Journal of Current Microbiology and Applied Sciences 9 (5):1428–32. doi:10.20546/ijcmas.2020.905.163.
  • Nuanmano, S., T. Prodpran, and S. Benjakul. 2015. Potential use of gelatin hydrolysate as plasticizer in fish myofibrillar protein film. Food Hydrocolloids 47:61–68. Elsevier Ltd. doi:10.1016/j.foodhyd.2015.01.005.
  • Obasi, H. C., F. N. Onuoha, I. O. Eze, and S. C. Nwanonenyi. 2013, July. Effect of soil burial on properties of polypropylene (pp)/plasticized potato starch (pps) blends. The International Journal of Engineering and Science 2013:1813–2319. ( 2013). doi:10.1155/2013/326538.
  • Pandey, J. K., H. Takagi, A. Norio Nakagaito, D. Ram Saini, and S. Hoon Ahn. 2012. An overview on the cellulose based conducting composites. Composites Part B: Engineering 43 (7):2822–26. Elsevier Ltd. doi:10.1016/j.compositesb.2012.04.045.
  • Pawar, P. A., and A. H. Purwar. 2013. Biodegradable polymers in food packaging. American Journal of Engineering Research (05):151–64.
  • Pellicer, E., D. Nikolic, J. Sort, M. Dolors Baró, F. Zivic, N. Grujovic, R. Grujic, and S. Pelemis. 2017. Advances in applications of industrial biomaterials. Advances in Applications of Industrial Biomaterials 1–214. doi:10.1007/978-3-319-62767-0.
  • Prado, K. S., and M. A. S. Spinacé. 2019. Isolation and characterization of cellulose nanocrystals from pineapple crown waste and their potential uses. International Journal of Biological Macromolecules 122: 410–16. Elsevier B.V. doi:10.1016/j.ijbiomac.2018.10.187.
  • Prathipa, R., C. Sivakumar, and B. Shanmugasundaram. 2018. Biodegradable polymers for sustainable packaging applications. International Journal of Mechanical Engineering and Technology 9 (6):293–303.
  • Psomiadou, E., I. Arvanitoyannis, and N. Yamamoto. 1996. Edible films made from natural resources; microcrystalline cellulose (MCC), methylcellulose (MC) and corn starch and polyols—part 2. Carbohydrate Polymers 31 (4):193–204. doi:10.1016/S0144-8617(96)00077-X.
  • Reichert, C. L., E. Bugnicourt, M. Beatrice Coltelli, P. Cinelli, A. Lazzeri, I. Canesi, F. Braca, B. M. Martínez, R. Alonso, L. Agostinis, et al. 2020. Bio-based packaging: materials, modifications, industrial applications and sustainability. Polymers. 12(7):1558. doi:10.3390/polym12071558.
  • Robertson, G. L. 2004. Book Review: Food Packaging Technology. Packaging Technology and Science: An International Journal. 17(6):333–335. doi:10.1002/pts.655.
  • Rogovina, S. Z. 2016. Biodegradable polymer composites based on synthetic and natural polymers of various classes. Polymer Science - Series C 58 (1):62–73. doi:10.1134/S1811238216010100.
  • Rungsinee, S., and J. M. Krochta. 2005. Plasticizers in edible films and coatings. Innovations in Food Packaging 403–33. doi:10.1016/B978-012311632-1/50055-3.
  • Saba, N., P. Md Tahir, and M. Jawaid. 2014. A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6 (8):2247–73. doi:10.3390/polym6082247.
  • Salman, S. D. 2019. Partial replacement of synthetic fibres by natural fibres in hybrid composites and its effect on monotonic properties. Journal of Industrial Textiles 51:258–76. doi:10.1177/1528083719878843.
  • Sanjay, M. R., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172: Elsevier B.V. doi:10.1016/j.jclepro.2017.10.101.
  • Sessini, V., M. P. Arrieta, J. Maria Kenny, and L. Peponi. 2016. Processing of edible films based on nanoreinforced gelatinized starch. Polymer Degradation and Stability 132:157–68. doi:10.1016/j.polymdegradstab.2016.02.026.
  • Shariatinia, Z., and K. Fasihozaman-Langroodi. 2019. Biodegradable polymer nanobiocomposite packaging materials. Trends in Beverage Packaging Elsevier Inc. doi:10.1016/b978-0-12-816683-3.00008-6.
  • Sharmin, N., R. A. Khan, S. Salmieri, D. Dussault, and M. Lacroix. 2012. “Fabrication and characterization of biodegradable composite films made of using poly (caprolactone) reinforced with chitosan,” 698–705. doi:10.1007/s10924-012-0431-8.
  • Shen, Z., and D. Pascal Kamdem. 2015. Development and characterization of biodegradable chitosan films containing two essential oils. International Journal of Biological Macromolecules 74: 289–96. Elsevier B.V. doi:10.1016/j.ijbiomac.2014.11.046.
  • Siracusa, V. 2012. Food packaging permeability behaviour: A report. International Journal of Polymer Science 2012:1–11. 2012. doi:10.1155/2012/302029.
  • Siracusa, V., P. Rocculi, S. Romani, and M. Dalla Rosa. 2008. Biodegradable polymers for food packaging: A review. Trends in Food Science & Technology 19 (12):634–43. Elsevier Ltd. doi:10.1016/j.tifs.2008.07.003.
  • Slavutsky, A. M., and M. A. Bertuzzi. 2014. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydrate Polymers 110: 53–61. Elsevier Ltd. doi:10.1016/j.carbpol.2014.03.049.
  • Souza, A., R. Benze, E. Ferrão, C. Ditchfield, A. Coelho, and C. Tadini2012. Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature. LWT - Food Science and Technology 46 (1):110–17. Elsevier Ltd. doi:10.1016/j.lwt.2011.10.018.
  • Srivastava, K. R., M. Kumar Singh, P. Kumar Mishra, and P. Srivastava. 2019. Pretreatment of banana pseudostem fibre for green composite packaging film preparation with polyvinyl alcohol. Journal of Polymer Research 26 (4):4. doi:10.1007/s10965-019-1751-3.
  • Suardana, N. P. G., M. S. Ku, and J. Kyoo Lim. 2011. Effects of diammonium phosphate on the flammability and mechanical properties of bio-composites. Materials & Design 32 (4):1990–99. Elsevier Ltd. doi:10.1016/j.matdes.2010.11.069.
  • Vásconez, M. B., S. K. Flores, C. A. Campos, J. Alvarado, and L. N. Gerschenson. 2009. Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings. Food Research International 42 (7):762–69. Elsevier Ltd. doi:10.1016/j.foodres.2009.02.026.
  • Vieira, M. G. A., M. Altenhofen Da Silva, L. Oliveira Dos Santos, and M. Masumi Beppu. 2011. Natural-based plasticizers and biopolymer films: A review. European Polymer Journal 47 (3):254–63. Elsevier Ltd. doi:10.1016/j.eurpolymj.2010.12.011.
  • Vroman, I., and L. Tighzert. 2009. Biodegradable Polymers. Materials 2 (2):307–44. doi:10.3390/ma2020307.
  • Wakai, M., and E. Almenar. 2015. Effect of the presence of montmorillonite on the solubility of whey protein isolate films in food model systems with different compositions and PH. Food Hydrocolloids 43:612–21. Elsevier Ltd. doi:10.1016/j.foodhyd.2014.07.022.
  • Wang, S., A. Lu, and L. Zhang. 2016. Recent advances in regenerated cellulose materials. Progress in Polymer Science 53:169–206. Elsevier Ltd. doi:10.1016/j.progpolymsci.2015.07.003.
  • Wang, Z., Z. Yao, J. Zhou, M. He, Q. Jiang, A. Li, S. Li, M. Liu, S. Luo, and D. Zhang. 2019. Improvement of polylactic acid film properties through the addition of cellulose nanocrystals isolated from waste cotton cloth. International Journal of Biological Macromolecules 129:878–86. Elsevier B.V. doi:10.1016/j.ijbiomac.2019.02.021.
  • Wihodo, M., and C. I. Moraru. 2013. Physical and chemical methods used to enhance the structure and mechanical properties of protein films: Areview. Journal of Food Engineering 114 (3):292–302. doi:10.1016/j.jfoodeng.2012.08.021.
  • Xu, Q., C. Chen, K. Rosswurm, T. Yao, and S. Janaswamy. 2016. A facile route to prepare cellulose-based films. Carbohydrate Polymers 149:274–81. Elsevier Ltd. doi:10.1016/j.carbpol.2016.04.114.
  • Yalcin, B., M. Cakmak, A. Hakan Arkin, B. Hazer, and B. Erman. 2006. Control of optical anisotropy at large deformations in PMMA/Chlorinated-PHB (PHB-Cl) blends: mechano-optical behavior. Polymer 47 (24):8183–93. doi:10.1016/j.polymer.2006.09.051.
  • Yang, Z. Y., W. Jun Wang, Z. Qiang Shao, H. Dong Zhu, Y. -H. Li, and F. Jun Wang. 2013. The transparency and mechanical properties of cellulose acetate nanocomposites using cellulose nanowhiskers as fillers. Cellulose 20 (1):159–68. doi:10.1007/s10570-012-9796-z.
  • Yoksan, R., and S. Chirachanchai. 2010. Silver nanoparticle-loaded chitosan-starch based films: fabrication and evaluation of tensile, barrier and antimicrobial properties. Materials Science and Engineering: C 30 (6):891–97. Elsevier B.V. doi:10.1016/j.msec.2010.04.004.
  • Yuvaraj, D., J. Iyyappan, R. Gnanasekaran, G. Ishwarya, R. P. Harshini, V. Dhithya, M. Chandran, V. Kanishka, and K. Gomathi. 2021, September. Heliyon advances in bio food packaging – an overview. Heliyon 7 (9):e07998. Elsevier Ltd. doi: 10.1016/j.heliyon.2021.e07998.
  • Zafar, R., K. Mahmood Zia, S. Tabasum, F. Jabeen, A. Noreen, and M. Zuber. 2016. Polysaccharide based bionanocomposites, properties and applications: A review. International Journal of Biological Macromolecules 92: 1012–24. Elsevier B.V. doi:10.1016/j.ijbiomac.2016.07.102.
  • Zeng, A., Y. Wang, D. Li, J. Guo, and Q. Chen. 2020. Preparation and Antibacterial Properties of Polycaprolactone/Quaternized Chitosan Blends. Chinese Journal of Chemical Engineering 32:462–71. doi:10.1016/j.cjche.2020.10.001.
  • Zhai, M., L. Zhao, F. Yoshii, and T. Kume. 2004. Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydrate Polymers 57 (1):83–88. doi:10.1016/j.carbpol.2004.04.003.