1,372
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Extraction and Characterization of Novel Natural Fiber from Cryptostegia Grandiflora as a Potential Reinforcement in Biocomposites

ORCID Icon, , ORCID Icon, , &

References

  • Alias, A. H., M. N. Norizan, F. A. Sabaruddin, M. R. M. Asyraf, M. N. F. Norrrahim, A. R. Ilyas, A. M. Kuzmin, M. Rayung, S. S. Shazleen, A. Nazrin, et al. 2021. Hybridization of MMT/Lignocellulosic fiber reinforced polymer nanocomposites for structural applications: A review. Coatings 11 (11):1355. MDPI. doi:10.3390/coatings11111355.
  • Asyraf, M. R. M., M. Rafidah, S. Ebadi, A. Azrina, and M. R. Razman. 2022. Mechanical properties of sugar palm lignocellulosic fiber reinforced polymer composites: A review. Cellulose 29 (12):6493–12. Springer Science and Business Media B.V. doi:10.1007/s10570-022-04695-3.
  • Atiqah, A., M. Jawaid, M. R. Ishak, and S. M. Sapuan. 2018. Effect of alkali and silane treatments on mechanical and interfacial bonding strength of sugar palm fibers with thermoplastic polyurethane. Journal of Natural Fibers 15 (2):251–61. Taylor and Francis Inc. doi:10.1080/15440478.2017.1325427.
  • Bahrain, S. H. K., N. R. N. Masdek, J. Mahmud, M. N. Mohammed, S. M. Sapuan, R. A. Ilyas, A. Mohamed, M. A. Shamseldin, A. Abdelrahman, and M. R. M. Asyraf. 2022. Morphological, physical, and mechanical properties of sugar-palm (Arenga pinnata (Wurmb) Merr.)-reinforced silicone rubber biocomposites. Materials 15 (12):4062. MDPI. doi:10.3390/ma15124062.
  • Baskaran, P. G., M. Kathiresan, P. Senthamaraikannan, and S. S. Saravanakumar. 2018. Characterization of new natural cellulosic fiber from the bark of dichrostachys cinerea. Journal of Natural Fibers 15 (1):62–68. Taylor and Francis Inc. doi:10.1080/15440478.2017.1304314.
  • Bekele, T., A. Seifu, and A. Ayenew. 2019. Impacts of invasive plant, cryptostegia Grandiflora, on species diversity and composition of invaded areas in East Shewa Zone, Ethiopia. International Journal of Agriculture Innovations and Research 7: www.biosecurity.qld.gov.au.
  • Belaadi, A., A. Bezazi, M. Bourchak, F. Scarpa, and C. Zhu. 2014. Thermochemical and statistical mechanical properties of natural sisal fibers. Composites Part B: Engineering 67: 481–89. Elsevier Ltd. doi:10.1016/j.compositesb.2014.07.029.
  • Belouadah, Z., A. Ati, and M. Rokbi. 2015, August. Characterization of new natural cellulosic fiber from lygeum spartum L. Carbohydrate Polymers 134:429–37. ( Elsevier Ltd). doi:10.1016/j.carbpol.2015.08.024.
  • Célino, A., S. Fréour, F. Jacquemin, and P. Casari. 2014. The hygroscopic behavior of plant fibers: A review. Frontiers in Chemistry 1: JAN Frontiers Media S. A. 10.3389/fchem.2013.00043.
  • Ding, L., X. Han, L. Cao, Y. Chen, Z. Ling, J. Han, S. He, and S. Jiang. 2022. Characterization of natural fiber from manau rattan (Calamus Manan) as a potential reinforcement for polymer-based composites. Journal of Bioresources and Bioproducts 7 (3):190–200. KeAi Communications Co. doi:10.1016/j.jobab.2021.11.002.
  • Fiore, V., T. Scalici, and A. Valenza. 2014. Characterization of a new natural fiber from Arundo Donax L. as potential reinforcement of Polymer Composites. Carbohydrate Polymers 106 (1):77–83. doi:10.1016/j.carbpol.2014.02.016.
  • Ganapathy, T., R. Sathiskumar, P. Senthamaraikannan, S. S. Saravanakumar, and A. Khan. 2019, October. Characterization of raw and alkali treated new natural cellulosic fibers extracted from the aerial roots of Banyan tree. International Journal of Biological Macromolecules 138:573–81. ( Elsevier B.V). doi: 10.1016/j.ijbiomac.2019.07.136.
  • Hyness, N. R. J., N. J. Vignesh, P. Senthamaraikannan, S. S. Saravanakumar, and M. R. Sanjay. 2018. Characterization of new natural cellulosic fiber from heteropogon contortus plant. Journal of Natural Fibers 15 (1):146–53. Taylor and Francis Inc. doi:10.1080/15440478.2017.1321516.
  • Indran, S., R. Edwin Raj, and V. S. Sreenivasan. 2014, September. Characterization of new natural cellulosic fiber from cissus quadrangularis root. Carbohydrate polymers 110:423–29. ( Elsevier Ltd). doi:10.1016/j.carbpol.2014.04.051.
  • Jawaid, M., N. S. Alothman Othman, Y. A. Shekeil, M. T. Paridah, and H. P. S. Abdul Khalil. 2014. Effect of chemical modifications of fibers on tensile properties of epoxy hybrid composites. International Journal of Polymer Analysis and Characterization 19 (5):391–403. Taylor and Francis Inc. doi:10.1080/1023666X.2014.904081.
  • Jayaramudu, J., G. Siva Mohan Reddy, K. Varaprasad, E. R. Sadiku, S. S. Ray, and A. Varada Rajulu. 2014. Mechanical properties of uniaxial natural fabric Grewia Tilifolia reinforced epoxy based composites: Effects of chemical treatment. Fibers and Polymers 15 (7):1462–68. Korean Fiber Society. doi:10.1007/s12221-014-1462-7.
  • Kommula, V. P., K. Obi Reddy, M. Shukla, T. Marwala, and A. Varada Rajulu. 2013. Physico-chemical, tensile, and thermal characterization of Napier grass (Native African) fiber strands. International Journal of Polymer Analysis and Characterization 18 (4):303–14. doi:10.1080/1023666X.2013.784935.
  • Kumar, R., N. Rajesh Jesudoss Hynes, P. Senthamaraikannan, S. Saravanakumar, and M. R. Sanjay. 2018. Physicochemical and thermal properties of ceiba pentandra bark fiber. Journal of Natural Fibers 15 (6):822–29. Taylor and Francis Inc. doi:10.1080/15440478.2017.1369208.
  • Kumar, V., and A. S. Singha. 2010. Natural fibres-based polymers: Part I—Mechanical analysis of Pine needles reinforced biocomposites. Bulletin of Materials Science 33 (3):257–64. doi:10.1007/s12034-010-0040-x.
  • Luizza, M. W., T. Wakie, P. H. Evangelista, and C. S. Jarnevich. 2016. Integrating local pastoral knowledge, participatory mapping, and species distribution modeling for risk assessment of invasive rubber vine (Cryptostegia Grandiflora) in Ethiopia’s Afar Region. Ecology and Society 21(1): Resilience Alliance. doi:10.5751/ES-07988-210122.
  • Maache, M., A. Bezazi, S. Amroune, F. Scarpa, and A. Dufresne. 2017, September. Characterization of a novel natural cellulosic fiber from Juncus Effusus L. Carbohydrate Polymers 171:163–72. ( Elsevier Ltd). doi:10.1016/j.carbpol.2017.04.096.
  • Madhu, P., M. R. Sanjay, P. Senthamaraikannan, S. Pradeep, S. S. Saravanakumar, and B. Yogesha. 2019. A review on synthesis and characterization of commercially available natural fibers: Part-I. Journal of Natural Fibers 16 (8):1132–44. Taylor and Francis Inc. doi:10.1080/15440478.2018.1453433.
  • Manimaran, P., P. Senthamaraikannan, M. R. Sanjay, M. K. Marichelvam, and M. Jawaid. 2018, February. Study on characterization of furcraea foetida new natural fiber as composite reinforcement for lightweight applications. Carbohydrate polymers 181:650–58. ( Elsevier Ltd). doi:10.1016/j.carbpol.2017.11.099.
  • Mayandi, K., N. Rajini, P. Pitchipoo, J. T. W. Jappes, and A. Varada Rajulu. 2016. Extraction and characterization of new natural lignocellulosic fiber cyperus pangorei. International Journal of Polymer Analysis and Characterization 21 (2):175–83. Taylor and Francis Inc. doi:10.1080/1023666X.2016.1132064.
  • Narayanasamy, P., P. Balasundar, S. Senthil, M. R. Sanjay, S. Siengchin, A. Khan, and A. M. Asiri. 2020, May. Characterization of a novel natural cellulosic fiber from calotropis Gigantea fruit bunch for ecofriendly polymer composites. International Journal of Biological Macromolecules 150:793–801. ( Elsevier B.V). doi:10.1016/j.ijbiomac.2020.02.134.
  • Nurazzi, N. M., M. R. M. Asyraf, S. Fatimah Athiyah, S. S. Shazleen, S. Ayu Rafiqah, M. M. Harussani, S. H. Kamarudin, M. R. Razman, M. Rahmah, E. S. Zainudin, et al. 2021. A review on mechanical performance of hybrid natural fiber polymer composites for structural applications. Polymers 13 (13):2170. MDPI AG. doi:10.3390/polym13132170.
  • Premalatha, N., S. S. Saravanakumar, M. R. Sanjay, S. Siengchin, and A. Khan. 2021. Structural and thermal properties of chemically modified luffa cylindrica fibers. Journal of Natural Fibers 18 (7):1038–44. Bellwether Publishing, Ltd. doi:10.1080/15440478.2019.1678546.
  • Raja, K., B. Prabu, P. Ganeshan, V. S. Chandra Sekar, and B. NagarajaGanesh. 2021. Characterization studies of natural cellulosic fibers extracted from shwetark stem. Journal of Natural Fibers 18 (11):1934–45. Taylor and Francis Ltd. doi:10.1080/15440478.2019.1710650.
  • Ramasamy, R., K. Obi Reddy, and A. Varada Rajulu. 2018. Extraction and characterization of calotropis gigantea bast fibers as novel reinforcement for composites materials. Journal of Natural Fibers 15 (4):527–38. Taylor and Francis Inc. doi:10.1080/15440478.2017.1349019.
  • Reddy, K., C. U. M. Obi, K. Ramakrishna Reddy, M. Shukla, E. Muzenda, and A. Varada Rajulu. 2015. Effect of chemical treatment and fiber loading on mechanical properties of borassus (Toddy Palm) Fiber/Epoxy Composites. International Journal of Polymer Analysis and Characterization 20 (7):612–26. Bellwether Publishing, Ltd. doi:10.1080/1023666X.2015.1054084.
  • Reddy, K., B. A. Obi, K. R. N. Reddy, Y. E. Feng, J. Zhang, and A. Varada Rajulu. 2014. Extraction and characterization of novel lignocellulosic fibers from thespesia lampas plant. International Journal of Polymer Analysis and Characterization 19 (1):48–61. doi:10.1080/1023666X.2014.854520.
  • Reddy, K. O., M. Shukla, C. Uma Maheswari, and A. Varada Rajulu. 2012. Evaluation of mechanical behavior of chemically modified borassus fruit short Fiber/Unsaturated polyester composites. Journal of Composite Materials 46 (23):2987–98. doi:10.1177/0021998312454032.
  • Rodríguez-Estrella, R., J. Juan Pérez Navarro, B. Granados, and L. Rivera. 2010. The distribution of an invasive plant in a fragile ecosystem: The rubber vine (Cryptostegia Grandiflora) inoases of the Baja California Peninsula. Biological invasions 12 (10):3389–93. doi:10.1007/s10530-010-9758-z.
  • Sanjay, M. R., G. R. Arpitha, L. Laxmana Naik, K. Gopalakrishna, and B. Yogesha. 2016. Applications of natural fibers and its composites: An overview. Natural Resources 07 (03):108–14. Scientific Research Publishing, Inc. doi:10.4236/nr.2016.73011.
  • Santhanam, K., A. Kumaravel, S. S. Saravanakumar, and V. P. Arthanarieswaran. 2016. Characterization of new natural cellulosic fiber from the ipomoea staphylina plant. International Journal of Polymer Analysis and Characterization 21 (3):267–74. Taylor and Francis Inc. doi:10.1080/1023666X.2016.1147654.
  • Senthilkumar, K., N. Rajini, N. Saba, M. Chandrasekar, M. Jawaid, and S. Siengchin. 2019. Effect of alkali treatment on mechanical and morphological properties of pineapple leaf fiber/polyester composites. Journal of Polymers and the Environment 27 (6):1191–201. Springer New York LLC. doi:10.1007/s10924-019-01418-x.
  • Sudhakara, P., A. P. Kamala Devi, C. Venkata Prasad, K. Obi Reddy, L. Dong Woo, B. S. Kim, and J. I. Song. 2013. Thermal, mechanical, and morphological properties of maleated polypropylene compatibilized borassus fruit fiber/polypropylene composites. Journal of Applied Polymer Science 128 (2):976–82. doi:10.1002/app.38135.
  • Sumrith, N., L. Techawinyutham, M. R. Sanjay, R. Dangtungee, and S. Siengchin. 2020. Characterization of alkaline and silane treated fibers of ‘water hyacinth plants’ and reinforcement of ‘water hyacinth fibers’ with bioepoxy to develop fully biobased sustainable ecofriendly composites. Journal of Polymers and the Environment 28 (10):2749–60. Springer. doi:10.1007/s10924-020-01810-y.
  • Thakur, V. K., M. Kumari Thakur, and R. Kumar Gupta. 2014. Review: Raw natural fiber–based polymer composites. International Journal of Polymer Analysis and Characterization 19 (3):256–71. doi:10.1080/1023666X.2014.880016.
  • Vijay, R., J. D. James Dhilip, S. Gowtham, S. Harikrishnan, B. Chandru, M. Amarnath, and A. Khan. 2022. Characterization of natural cellulose fiber from the barks of Vachellia Farnesiana. Journal of Natural Fibers 19 (4):1343–52. Taylor and Francis Ltd. doi:10.1080/15440478.2020.1764457.
  • Vinod, A., M. R. Sanjay, S. Suchart, and P. Jyotishkumar. 2020. renewable and Sustainable Biobased Materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. Journal of Cleaner Production 258:120978. Elsevier Ltd. doi:10.1016/j.jclepro.2020.120978.