945
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Mechanical Characterization of Aluminum Sandwich Structures with Woven-Ply Pineapple Leaf/Glass Fiber-Reinforced Hybrid Composite Core

ORCID Icon, , , , &

References

  • Abd El-Baky, M. A., A. E. Alshorbagy, A. M. Alsaeedy, and M. Megahed. 2022. Fabrication of cost effective fiber metal laminates based on jute and glass fabrics for enhanced mechanical properties. Journal of Natural Fibers 19 (1): 303–16. doi:10.1080/15440478.2020.1739594.
  • Chandrasekar, M., M. R. Ishak, S. M. Sapuan, Z. Leman, M. Jawaid, and R. M. Shahroze. 2019. Fabrication of fibre metal laminate with flax and sugar palm fibre based epoxy composite and evaluation of their fatigue properties. Journal of Polymer Materials 35 (4):461–71. doi:10.32381/jpm.2018.35.04.5.
  • Feng, N. L., S. Dhar Malingam, N. Mohd Ishak, and K. Subramaniam. 2021. Novel sandwich structure of composite-metal laminates based on cellulosic woven pineapple leaf fibre. Journal of Sandwich Structures and Materials 23 (7):3450–65. doi:10.1177/1099636220931479.
  • Ferrante, L., F. Sarasini, J. Tirillò, L. Lampani, T. Valente, and P. Gaudenzi. 2016. Low velocity impact response of basalt-aluminium fibre metal laminates. Materials & Design 98:98–107. doi:10.1016/j.matdes.2016.03.002.
  • Huang, Y., J. Liu, X. Huang, J. Zhang, and G. Yue. 2015. Delamination and fatigue crack growth behavior in fiber metal laminates (glare) under single overloads. International Journal of Fatigue 78:53–60. doi:10.1016/j.ijfatigue.2015.04.002.
  • Idicula, M., K. Joseph, and S. Thomas. 2010. Mechanical performance of short banana/sisal hybrid fiber reinforced polyester composites. Journal of Reinforced Plastics and Composites 29 (1):12–29. doi:10.1177/0731684408095033.
  • John, M. J., and R. D. Anandjiwala. 2009. Chemical modification of flax reinforced polypropylene composites. Composites: Part A, Applied Science and Manufacturing 40 (4):442–48. doi:10.1016/j.compositesa.2009.01.007.
  • Kumar, S., and A. Saha. 2022. Effects of stacking sequence of pineapple leaf-flax reinforced hybrid composite laminates on mechanical characterization and moisture resistant properties. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 236 (3):1733–50. doi:10.1177/09544062211023105.
  • Mohammed, I., A. R. Abu Talib, M. T. Hameed Sultan, M. Jawaid, A. H. Ariffin, and S. Saadon. 2018. Mechanical properties of fibre-metal laminates made of natural/synthetic fibre composites. BioResources 13 (1):2022–34. doi:10.15376/biores.13.1.2022-2034.
  • Najeeb, M. I., M. T. H. Sultan, A. U. Md Shah, S. M. M. Amir, S. N. A. Safri, M. Jawaid, and M. R. Shari. 2021. Low-velocity impact analysis of pineapple leaf fiber (palf) hybrid composites. Polymers 13 (18):3194. doi:10.3390/polym13183194.
  • Ng, L. F., D. Sivakumar, X. J. Woo, S. Kathiravan, and I. Siva. 2019. The effects of bonding temperature and surface roughness on the shear strength of bonded aluminium laminates using polypropylene based adhesive. Journal of Advanced Manufacturing Technology 13 (2):113–27.
  • Ng, L. F., M. Y. Yahya, and C. Muthukumar. 2022. Mechanical characterization and water absorption behaviors of pineapple leaf/glass fiber-reinforced polypropylene hybrid composites. Polymer Composites 43 (1):203–14. doi:10.1002/pc.26367.
  • Ruan, D., M. A. Kariem, and I. G. Crouch. 2017. High strain rate and specialised testing. In The science of armour materials, ed. I. G. Crouch, 581–637. Woodhead Publishing. doi: 10.1016/b978-0-08-100704-4.00010-4.
  • Sanjay, M. R., and B. Yogesha. 2018. Studies on hybridization effect of jute/Kenaf/E-glass woven fabric epoxy composites for potential applications: Effect of laminate stacking sequences. Journal of Industrial Textiles 47 (7):1830–48. doi:10.1177/1528083717710713.
  • Sharba, M. J., Z. Leman, M. T. H. Sultan, M. R. Ishak, and M. A. Azmah Hanim. 2016. Effects of kenaf fiber orientation on mechanical properties and fatigue life of glass/kenaf hybrid composites. BioResources 11 (1):1448–65. doi:10.15376/biores.11.1.2665-2683.
  • Subramaniam, K., S. Dhar Malingam, N. L. Feng, and O. Bapokutty. 2019. The effects of stacking configuration on the response of tensile and quasi-static penetration to woven kenaf/glass hybrid composite metal laminate. Polymer Composites 40 (2):568–77. doi:10.1002/pc.24691.
  • Taghizadeh, S. A., G. Liaghat, A. Niknejad, and E. Pedram. 2019. Experimental study on quasi-static penetration process of cylindrical indenters with different nose shapes into the hybrid composite panels. Journal of Composite Materials 53 (1):107–23. doi:10.1177/0021998318780490.
  • Velmurugan, R., and V. Manikandan. 2007. Mechanical properties of palmyra/glass fiber hybrid composites. Composites: Part A, Applied Science and Manufacturing 38 (10):2216–26. doi:10.1016/j.compositesa.2007.06.006.
  • Verma, L., J. J. Andrew, S. M. Sivakumar, G. Balaganesan, S. Vedantam, and H. N. Dhakal. 2021. Evaluation of quasi-static indentation response of superelastic shape memory alloy embedded GFRP laminates using AE monitoring. Polymer testing 93:106942. doi:10.1016/j.polymertesting.2020.106942.
  • Vlot, A., and W. Gunnink. 2001. Fibre Metal Laminates: An Introduction. The Netherlands: Kluwer Academic Publishers. Netherlands Kluwer Acad.
  • Wu, Z., X. Wang, K. Iwashita, T. Sasaki, and Y. Hamaguchi. 2010. Tensile fatigue behaviour of FRP and hybrid FRP sheets. Composites Part B: Engineering 41 (5):396–402. doi:10.1016/j.compositesb.2010.02.001.
  • Ying, S., T. Mengyun, R. Zhijun, S. Baohui, and C. Li. 2017. An experimental investigation on the low-velocity impact response of carbon-aramid/epoxy hybrid composite laminates. Journal of Reinforced Plastics and Composites 36 (6):422–34. doi:10.1177/0731684416680893.
  • Zareei, N., A. Geranmayeh, and R. Eslami-Farsani. 2019. The effect of different configurations on the bending and impact properties of the laminated composites of aluminum-hybrid basalt and jute fibers-epoxy. Fibers and Polymers 20:1054–60. doi:10.1007/s12221-019-1148-2.