1,085
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Static and Dynamic Behavior of Hemp Natural Fiber Felt Biocomposites

, &

References

  • Ahmad, F., H. S. Choi, and M. K. Park. 2015. A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular Materials and Engineering 300 (1):10–18. doi:10.1002/mame.201400089.
  • AL-Oqla, F. M. 2017. Investigating the mechanical performance deterioration of Mediterranean cellulosic cypress and pine/polyethylene composites. Cellulose 24 (6):2523–30. doi:10.1007/s10570-017-1280-3.
  • AL-Oqla, F. M. 2021. Effects of intrinsic mechanical characteristics of lignocellulosic fibres on the energy absorption and impact rupture stress of low density polyethylene biocomposites. International Journal of Sustainable Engineering 14 (6):2009–17. doi:10.1080/19397038.2021.1966127.
  • Al-Oqla, F. M. 2021. Flexural characteristics and impact rupture stress investigations of sustainable green olive leaves bio-composite materials. Journal of Polymers and the Environment 29 (3):892–99. doi:10.1007/s10924-020-01889-3.
  • Al-Oqla, F. M. 2021. Performance trends and deteriorations of lignocellulosic grape fiber/polyethylene biocomposites under harsh environment for enhanced sustainable bio-materials. Cellulose 28 (4):2203–13. doi:10.1007/s10570-020-03649-x.
  • Al-Oqla, F. M. 2021. Predictions of the mechanical performance of leaf fiber thermoplastic composites by FEA. International Journal of Applied Mechanics 13 (06):2150066. doi:10.1142/S1758825121500666.
  • AL-Oqla, F. M., M. Alaaeddin, and Y. El-Shekeil. 2021. Thermal stability and performance trends of sustainable lignocellulosic olive/low density polyethylene biocomposites for better environmental green materials. Engineering Solid Mechanics 9 (4):439–48. doi:http://dx.doi.org/10.5267/j.esm.2021.5.002.
  • AL-Oqla, F. M., and R. Al-Jarrah. 2021. A novel adaptive neuro-fuzzy inference system model to predict the intrinsic mechanical properties of various cellulosic fibers for better green composites. Cellulose 28 (13):8541–52. doi:10.1007/s10570-021-04077-1.
  • Al-Oqla, F. M., and Y. A. El-Shekeil. 2019. Investigating and predicting the performance deteriorations and trends of polyurethane bio-composites for more realistic sustainable design possibilities. Journal of Cleaner Production 222:865–70. doi:10.1016/j.jclepro.2019.03.042.
  • AL-Oqla, F. M., and M. T. Hayajneh. 2021. A hierarchy weighting preferences model to optimise green composite characteristics for better sustainable bio-products. International Journal of Sustainable Engineering 14 (5):1043–48. doi:10.1080/19397038.2020.1822951.
  • AL-Oqla, F. M., M. T. Hayajneh, and A. Aldhirat. 2021. Tribological and mechanical fracture performance of Mediterranean lignocellulosic fiber reinforced polypropylene composites. Polymer Composites 42 (10):5501–11. doi:10.1002/pc.26241.
  • AL-Oqla, F. M., M. T. Hayajneh, and M. A. M. Al-Shrida. 2022. Mechanical performance, thermal stability and morphological analysis of date palm fiber reinforced polypropylene composites toward functional bio-products. Cellulose 29 (6):3293–309. doi:10.1007/s10570-022-04498-6.
  • Al-Oqla, F. M., M. T. Hayajneh, and O. Fares. 2019. Investigating the mechanical thermal and polymer interfacial characteristics of Jordanian lignocellulosic fibers to demonstrate their capabilities for sustainable green materials. Journal of Cleaner Production 241:118256. doi:10.1016/j.jclepro.2019.118256.
  • AL-Oqla, F. M., and M. Rababah. 2017. Challenges in design of nanocellulose and its composites for different applications. In Cellulose-reinforced nanofibre composites, 113–27. Woodhead Publishing. doi:10.1016/B978-0-08-100957-4.00005-X.
  • Al-Oqla, F. M., and S. M. Sapuan. 2014. Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production 66:347–54. doi:10.1016/j.jclepro.2013.10.050.
  • AL-Oqla, F. M., and S. M. Sapuan. 2018. Investigating the inherent characteristic/performance deterioration interactions of natural fibers in bio-composites for better utilization of resources. Journal of Polymers and the Environment 26 (3):1290–96. doi:10.1007/s10924-017-1028-z.
  • Al-Oqla, F. M., and S. M. Sapuan. ed. 2020. Advanced processing, properties, and applications of starch and other bio-based polymers. Elsevier. 10.1016/C2019-0-00380-9
  • AL-Oqla, F. M., S. M. Sapuan, and O. Fares. 2018. Electrical–based applications of natural fiber vinyl polymer composites. In Natural fibre reinforced vinyl ester and vinyl polymer composites, 349–67. Woodhead Publishing. doi:10.1016/B978-0-08-102160-6.00018-4.
  • AL-Oqla, F. M., S. M. Sapuan, and M. Jawaid. 2016. Integrated mechanical-economic–environmental quality of performance for natural fibers for polymeric-based composite materials. Journal of Natural Fibers 13 (6):651–59. doi:10.1080/15440478.2015.1102789.
  • Al-Oqla, F. M., and V. K. Thakur. 2022. Toward chemically treated low-cost lignocellulosic parsley waste/polypropylene bio-composites for resourceful sustainable bio-products. International Journal of Environmental Science and Technology 19 (7):6681–90. doi:10.1007/s13762-021-03601-x.
  • Aridi, N. A. M., S. M. Sapuan, E. S. Zainudin, and F. M. AL-Oqla. 2016. Investigating morphological and performance deterioration of injection-molded rice husk–polypropylene composites due to various liquid uptakes. International Journal of Polymer Analysis and Characterization 21 (8):675–85. doi:10.1080/1023666X.2016.1207006.
  • Aridi, N. A. M., S. M. Sapuan, E. S. Zainudin, and F. M. Al-Oqla. 2017. A review of rice husk bio-based composites. Current Organic Synthesis 14 (2):263–71. doi:http://dx.doi.org/10.2174/1570179413666160920163613.
  • Arockiam, N. J., M. Jawaid, and N. Saba. 2018. Sustainable bio composites for aircraft components. In Sustainable composites for aerospace applications, 109–23. Woodhead Publishing. doi:10.1016/C2016-0-01691-1.
  • Barbosa, L. G., M. Piaia, and G. H. Ceni. 2017. Analysis of impact and tensile properties of recycled polypropylene. International Journal of Materials Engineering 7 (6):117–20. doi:10.5923/j.ijme.20170706.03.
  • Bernatas, R., S. Dagréou, A. Despax-Ferreres, and A. Barasinski. 2021. Recycling of fiber reinforced composites with a focus on thermoplastic composites. Cleaner Engineering and Technology 5:100272. doi:10.1016/j.clet.2021.100272.
  • Bourmaud, A., A. Le Duigou, and C. Baley. 2011. What is the technical and environmental interest in reusing a recycled polypropylene–hemp fibre composite? Polymer Degradation and Stability 96 (10):1732–39. doi:10.1016/j.polymdegradstab.2011.08.003.
  • Campilho, R. D. S. G. ed. 2015. Natural fiber composites. 1st. CRC Press. 10.1201/b19062
  • Chawla, K. K. 2012. Composite materials: Science and engineering. Springer Science & Business Media. doi:10.1007/978-0-387-74365-3.
  • Chee, S. S., M. Jawaid, M. T. H. Sultan, O. Y. Alothman, and L. C. Abdullah. 2019. Thermomechanical and dynamic mechanical properties of bamboo/woven kenaf mat reinforced epoxy hybrid composites. Composites Part B: Engineering 163:165–74. doi:10.1016/j.compositesb.2018.11.039.
  • Chokshi, S., V. Parmar, P. Gohil, and V. Chaudhary. 2022. Chemical composition and mechanical properties of natural fibers. Journal of Natural Fibers 19 (10):3942–53. doi:10.1080/15440478.2020.1848738.
  • Das, P. P., V. Chaudhary, F. Ahmad, A. Manral, S. Gupta, and P. Gupta. 2022. Acoustic performance of natural fiber reinforced polymer composites: Influencing factors, future scope, challenges, and applications. Polymer Composites 43 (3):1221–37. doi:10.1002/pc.26455.
  • Eckert, E., and O. Kovalevska. 2021. Sustainability in the European Union: Analyzing the Discourse of the European Green Deal. Journal of Risk and Financial Management 14 (2):80. doi:10.3390/jrfm14020080.
  • Hargitai, H., I. Rácz, and R. D. Anandjiwala. 2008. Development of hemp fiber reinforced polypropylene composites. Journal of Thermoplastic Composite Materials 21 (2):165–74. doi:10.1177/0892705707083949.
  • Hayajneh, M., F. M. AL-Oqla, and A. Aldhirat. 2021. Physical and mechanical inherent characteristic investigations of various Jordanian natural fiber species to reveal their potential for green biomaterials. Journal of Natural Fibers 19:1–14. doi:10.1080/15440478.2021.1944432.
  • Hayajneh, M. T., F. M. AL-Oqla, and M. Mu’ayyad. 2021. Hybrid green organic/inorganic filler polypropylene composites: Morphological study and mechanical performance investigations. e-Polymers 21 (1):710–21. doi:10.1515/epoly-2021-0074.
  • Islam, M. S., K. L. Pickering, and N. J. Foreman. 2011. Influence of alkali fiber treatment and fiber processing on the mechanical properties of hemp/epoxy composites. Journal of Applied Polymer Science 119 (6):3696–707. doi:10.1002/app.31335.
  • Jaafar, J., J. P. Siregar, S. Mohd Salleh, M. H. Mohd Hamdan, T. Cionita, and T. Rihayat. 2019. Important considerations in manufacturing of natural fiber composites: A review. International Journal of Precision Engineering and Manufacturing-Green Technology 6 (3):647–64. doi:10.1007/s40684-019-00097-2.
  • Joshi, S. V., L. T. Drzal, A. K. Mohanty, and S. Arora. 2004. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites: Part A, Applied Science and Manufacturing 35 (3):371–76. doi:10.1016/j.compositesa.2003.09.016.
  • Liao, J., S. Zhang, and X. Tang. 2022. Sound absorption of hemp fibers (Cannabis Sativa L.) based nonwoven fabrics and composites: A review. Journal of Natural Fibers 19 (4):1297–309. doi:10.1080/15440478.2020.1764453.
  • Mallick, P. K. 2017. Processing of polymer matrix composites. CRC Press. doi:10.1201/9781315157252.
  • Masirek, R., Z. Kulinski, D. Chionna, E. Piorkowska, and M. Pracella. 2007. Composites of poly (L‐lactide) with hemp fibers: Morphology and thermal and mechanical properties. Journal of Applied Polymer Science 105 (1):255–68. doi:10.1002/app.26090.
  • Mazzanti, V., R. Pariante, A. Bonanno, O. R. de Ballesteros, F. Mollica, and G. Filippone. 2019. Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system. Composites Science and Technology 180:51–59. doi:10.1016/j.compscitech.2019.05.015.
  • Merotte, J., A. Le Duigou, A. Kervoelen, A. Bourmaud, K. Behlouli, O. Sire, and C. Baley. 2018. Flax and hemp nonwoven composites: The contribution of interfacial bonding to improving tensile properties. Polymer Testing 66:303–11. doi:10.1016/j.polymertesting.2018.01.019.
  • Monteiro, S. N., F. P. D. Lopes, A. S. Ferreira, and D. C. O. Nascimento. 2009. Natural-fiber polymer-matrix composites: Cheaper, tougher, and environmentally friendly. Jom 61 (1):17–22. doi:10.1007/s11837-009-0004-z.
  • Naik, V., and M. Kumar. 2021. A review on natural fiber composite material in automotive applications. Engineered Science 18:1–10. doi:https://dx.doi.org/10.30919/es8d589.
  • Niu, P., B. Liu, X. Wei, X. Wang, and J. Yang. 2011. Study on mechanical properties and thermal stability of polypropylene/hemp fiber composites. Journal of Reinforced Plastics and Composites 30 (1):36–44. doi:10.1177/0731684410383067.
  • Oh, J. T., J. H. Hong, Y. Ahn, and H. Kim. 2012. Reliability improvement of hemp based bio-composite by surface modification. Fibers and Polymers 13 (6):735–39. doi:10.1007/s12221-012-0735-2.
  • Peças, P., H. Carvalho, H. Salman, and M. Leite. 2018. Natural fibre composites and their applications: A review. Journal of Composites Science 2 (4):66. doi:10.3390/jcs2040066.
  • Petrucci, R., C. Santulli, D. Puglia, E. Nisini, F. Sarasini, J. Tirillò, J. M. Kenny, G. Minak, and J. M. Kenny. 2015. Impact and post-impact damage characterisation of hybrid composite laminates based on basalt fibres in combination with flax, hemp and glass fibres manufactured by vacuum infusion. Composites Part B: Engineering 69:507–15. doi:10.1016/j.compositesb.2014.10.031.
  • Phongam, N., R. Dangtungee, and S. Siengchin. 2015. Comparative studies on the mechanical properties of nonwoven- and woven-flax-fiber-reinforced poly(Butylene adipate-co-terephthalate)-based composite laminates. Mechanics of Composite Materials 51 (1):17–24. doi:10.1007/s11029-015-9472-0.
  • Pickering, K. L., G. W. Beckermann, S. N. Alam, and N. J. Foreman. 2007. Optimising industrial hemp fibre for composites. Composites: Part A, Applied Science and Manufacturing 38 (2):461–68. doi:10.1016/j.compositesa.2006.02.020.
  • Puech, L., K. R. Ramakrishnan, N. Le Moigne, S. Corn, P. R. Slangen, A. Le Duc, H. Boudhani, and A. Bergeret. 2018. Investigating the impact behaviour of short hemp fibres reinforced polypropylene biocomposites through high speed imaging and finite element modelling. Composites: Part A, Applied Science and Manufacturing 109:428–39. doi:10.1016/j.compositesa.2018.03.013.
  • Qiu, R., X. Ren, L. S. Fifield, K. L. Simmons, and K. Li. 2011. Hemp‐fiber‐reinforced unsaturated polyester composites: Optimization of processing and improvement of interfacial adhesion. Journal of Applied Polymer Science 121 (2):862–68. doi:10.1002/app.33674.
  • Ray, D. ed. 2017. Biocomposites for high-performance applications: Current barriers and future needs towards industrial development. Woodhead Publishing. 10.1016/C2015-0-04020-5
  • Rayyaan, R., W. R. Kennon, P. Potluri, and M. Akonda. 2020. Fibre architecture modification to improve the tensile properties of flax-reinforced composites. J journal of Composite Materials 54 (3):379–95. doi:10.1177/0021998319863156.
  • Sajid, L., O. Azmami, Z. el Ahmadi, A. Benayada, S. Majid, and S. Gmouh. 2021. Introduction of raw palm fibers in the textile industry by development of nonwoven composite materials based on Washingtonia palm fibers. The Journal of the Textile Institute 112 (11):1717–29. doi:10.1080/00405000.2020.1840690.
  • Santulli, C., and A. P. Caruso. 2009. Effect of fibre architecture on the falling weight impact properties of hemp/epoxy composites. Journal of Biobased Materials and Bioenergy 3 (3):291–97. doi:10.1166/jbmb.2009.1037.
  • Sawpan, M. A., K. L. Pickering, and A. Fernyhough. 2011. Improvement of mechanical performance of industrial hemp fibre reinforced polylactide biocomposites. Composites: Part A, Applied Science and Manufacturing 42 (3):310–19. doi:10.1016/j.compositesa.2010.12.004.
  • Song, Y., J. Liu, S. Chen, Y. Zheng, S. Ruan, and Y. Bin. 2013. Mechanical properties of poly (lactic acid)/hemp fiber composites prepared with a novel method. Journal of Polymers and the Environment 21 (4):1117–27. doi:10.1007/s10924-013-0569-z.
  • Souza, B. R., R. M. Di Benedetto, D. Hirayama, O. D. A. Raponi, L. C. M. Barbosa, and A. C. Ancelotti. 2017. Manufacturing and characterization of jute/PP thermoplastic commingled composite. Materials Research 20:458–65. doi:10.1590/1980-5373-MR-2017-0104.
  • Stelea, L., I. Filip, G. Lisa, M. Ichim, M. Drobotă, C. Sava, and A. Mureșan. 2022. Characterisation of hemp fibres reinforced composites using thermoplastic polymers as matrices. Polymers 14 (3):481. doi:10.3390/polym14030481.
  • Sullins, T., S. Pillay, A. Komus, and H. Ning. 2017. Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering 114:15–22. doi:10.1016/j.compositesb.2017.02.001.
  • Sunny, T., and K. L. Pickering. 2022. Improving polypropylene matrix composites reinforced with aligned hemp fibre mats using high fibre contents. Materials 15 (16):5587. doi:10.3390/ma15165587.
  • Thiagamani, S. M. K., S. Krishnasamy, C. Muthukumar, J. Tengsuthiwat, R. Nagarajan, S. Siengchin, and S. O. Ismail. 2019. Investigation into mechanical, absorption and swelling behaviour of hemp/sisal fibre reinforced bioepoxy hybrid composites: Effects of stacking sequences. International Journal of Biological Macromolecules 140:637–46. doi:10.1016/j.ijbiomac.2019.08.166.
  • Townsend, T. 2020. World natural fibre production and employment. In Handbook of Natural Fibres, 15–36. Woodhead Publishing. doi:10.1016/B978-0-12-818398-4.00002-5.
  • Tri Phuong, N., V. Gilbert, and B. Chuong. 2008. Preparation of recycled polypropylene/organophilic modified layered silicates nanocomposites part I: The recycling process of polypropylene and the mechanical properties of recycled polypropylene/organoclay nanocomposites. Journal of Reinforced Plastics and Composites 27 (18):1983–2000. doi:10.1177/0731684407086326.
  • Väisänen, T., P. Batello, R. Lappalainen, and L. Tomppo. 2018. Modification of hemp fibers (Cannabis Sativa L.) for composite applications. Industrial Crops and Products 111:422–29. doi:10.1016/j.indcrop.2017.10.049.
  • Xu, Z., L. Yang, Q. Ni, F. Ruan, and H. Wang. 2019. Fabrication of high-performance green hemp/polylactic acid fibre composites. Journal of Engineered Fibers and Fabrics 14:1558925019834497. doi:10.1177/1558925019834497.
  • Yan, Z. L., H. Wang, K. T. Lau, S. Pather, J. C. Zhang, G. Lin, and Y. Ding. 2013. Reinforcement of polypropylene with hemp fibres. Composites Part B: Engineering 46:221–26. doi:10.1016/j.compositesb.2012.09.027.
  • Zhang, J., A. A. Khatibi, E. Castanet, T. Baum, Z. Komeily-Nia, P. Vroman, and X. Wang. 2019. Effect of natural fibre reinforcement on the sound and vibration damping properties of bio-composites compression moulded by nonwoven mats. Composites Communications 13:12–17. doi:10.1016/j.coco.2019.02.002.