1,006
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Textile-Based Volatile Organic Compound Sensors Using Cellulose Fabrics and Direct Dyes

, , &

References

  • Abdelrahman, M., M. Fouda, J. Ajarem, S. Maodaa, A. Allam, and T. Khattab. 2020. Development of colorimetric cotton swab using molecular switching hydrazone probe in calcium alginate. Journal of Molecular Structure 1216 (15):128301–16. doi:10.1016/j.molstruc.2020.128301.
  • Ahmed, H., T. Khattab, H. Mashaly, A. El-Halwagy, and M. Rehan. 2020. Plasma activation toward multi-stimuli responsive cotton fabric via in situ development of polyaniline derivatives and silver nanoparticles. Cellulose 27:2913–26. doi:10.1007/s10570-020-02980-7.
  • Alaysuy, O., R. Snari, A. Alfi, A. Aldawsari, S. Abu-Melha, M. Khalifa, and N. El-Metwaly. 2022. Development of green and sustainable smart biochromic and therapeutic bandage using red cabbage (Brassica oleracea L. Var. capitata) extract encapsulated into alginate nanoparticles. International Journal of Biological Macromolecules 211 (30):390–99. doi:10.1016/j.ijbiomac.2022.05.062.
  • Al-Qahtani, S., H. Alzahrani, O. Azher, Z. Owidah, M. Abualnaja, T. Habeebullah, and N. El-Metwaly. 2021. Immobilization of anthocyanin-based red-cabbage extract onto cellulose fibers toward environmentally friendly biochromic diagnostic biosensor for recognition of urea. Journal of Environmental Chemical Engineering 9 (4):105493–502. doi:10.1016/j.jece.2021.105493.
  • Baumann, W., B. Groebel, and M. Krayer. 1987. Determination of relative colour strength and residual colour difference by means of reflectance measurements. Journal of Society of Dyers and Colourists 103 (2):100–05. doi:10.1111/j.1478-4408.1987.tb01101.x.
  • Beatty, M. A., A. J. Selinger, Y. Li, and F. Hof. 2019. Parallel synthesis and screening of supramolecular chemosensors that achieve fluorescent turn-on detection of drugs in saliva. Journal of the American Chemical Society 141 (42):16763–71. doi:10.1021/jacs.9b07073.
  • Chen, X., M. Yang, W. Xu, Q. Qu, Q. Zhao, and W. Zou. 2019. Broadly absorbing bluish black-to-transmissive sky blue electrochromic polymer based on 3,4-dioxythiophene. Journal of Solid State Electrochemistry 23 (1):19–25. doi:10.1007/s10008-018-4106-9.
  • De Meyer, T., I. Steyaert, K. Hemelsoet, R. Hoogenboom, V. Van Speybroeck, and K. De Clerck. 2016. Halochromic properties of sulfonphthaleine dyes in a textile environment: The influence of substituents. Dyes and Pigments 124:249–57. doi:10.1016/j.dyepig.2015.09.007.
  • El-Naggar, M., O. Ali, D. Saleh, M. Abu-Saied, and T. Khattab. 2021. Preparation of green and sustainable colorimetric cotton assay using natural anthocyanins for sweat sensing. International Journal of Biological Macromolecules 190 (1):894–903. doi:10.1016/j.ijbiomac.2021.09.049.
  • Fairchild, M. D. 2005. Color Appearance Models, 183–95. Chichester: John Wiley & Sons, Ltd.
  • Favaro, G., C. Clementi, A. Romani, and V. Vickackaite. 2007. Acidichromism and ionochromism of luteolin and apigenin, the main components of the naturally occurring yellow weld: A spectrophotometric and fluorimetric study. Journal of Fluorescence 17:707–14. doi:10.1007/s10895-007-0222-0.
  • Hau, F. K., K. Cheung, N. Zhu, and V. W. Yam. 2019. Calixarene-based alkynyl-bridged gold(i) isocyanide and phosphine complexes as building motifs for the construction of chemosensors and supra molecular architectures. Organic Chemistry Frontiers 6 (8):1205–13. doi:10.1039/C9QO00258H.
  • Henderson, R., C. Jimenez-Gaonzalez, D. Constable, S. Alston, G. Inglis, G. Fisher, J. Sherwood, S. Binks, and A. Curzons. 2011. Expanding GSK’s solvent selection guide – embedding sustainability into solvent selection starting at medicinal chemistry. Green Chemistry 13 (4):854–62. doi:10.1039/C0GC00918K.
  • Hunt, R. W. G. 1991. Measuring Colour, 71–77. New York: Ellis Horwood.
  • Kasha, M., H. R. Rawls, and A. El-Bayoumi. 1965. The exciton model in molecular spectroscopy. Pure and Applied Chemistry 11 (3–4):371–92. doi:10.1351/pac196511030371.
  • Kim, T., and S. Lee. 2015. Characteristics and application of the highly-durable and highly-sensitive super hydrophobic acid-gas sensing dye. Textile Coloration and Finishing 27 (2):105–12. doi:10.5764/TCF.2015.27.2.105.
  • Kim, T., and S. Lee. 2015. Synthesis and application of acid-gas sensing dyes having alkyl groups symmetrically substituted on monoazo chromophore. Fibers and Polymers 16 (10):2106–11. doi:10.1007/s12221-015-5428-1.
  • Kim, H., S. Wang, and Y. Son. 2012. Synthesis and properties of novel rhodamine 6G fluorescent dye compound. Textile Coloration and Finishing 24 (3):153–57. doi:10.5764/TCF.2012.24.3.153.
  • Koh, J. 2006. Alkali-clearable disperse dyeing of poly(ethyleneterephthalate) with azohydroxypyridone dyes containing a fluorosulfonyl group. Dyes and Pigments 69 (3):233–38. doi:10.1016/j.dyepig.2005.03.003.
  • Kubota, Y., M. Nakazawa, J. Lee, R. Naoi, M. Tachikawa, T. Inuzuka, K. Funabiki, M. Matsui, and T. Kim. 2021. Synthesis of near-infrared absorbing and fluorescent bis(pyrrol-2-yl)squaraines and their halochromic properties. Organic Chemistry Frontiers 8:6226–43. doi:10.1039/D1QO01169C.
  • Lee, J., H. Jun, Y. Kubota, and T. Kim. 2021. Synthesis of red fluorescent dye with acid gas sensitive optical properties and fabrication of a washable and wearable textile sensor. Textile Research Journal 91 (17–18):2036–52. doi:10.1177/0040517521994496.
  • Lee, J., and T. Kim. 2020. Synthesis of an acid-gas sensing fluorescence dye showing change of both color and fluorescence emission spectrum inside polyethylenic fiber on exposure to gas phase strong acid for application to washable textile sensors. Fibers and Polymers 21 (10):2275–84. doi:10.1007/s12221-020-1094-z.
  • Lee, J., and T. Kim. 2021. Synthesis of novel coumarin-based acid vapochromic fluorescence dye showing change of both color and fluorescence emission spectrum for application to sensitive, reusable, and washable textile sensors. Textile Research Journal 91 (5–6):613–23. doi:10.1177/0040517520955232.
  • Little, A., and R. Christie. 2016. Textile applications of commercial photochromic dyes. Part 6: Photochromic polypropylene fibres. Coloration Technology 132 (4):304–09. doi:10.1111/cote.12221.
  • Manjakkal, L., S. Dervin, and R. Dahiya. 2020. “Flexible potentiometric pH sensors for wearable systems. RSC advances 10 (15):8594–617. doi:10.1016/10.1039/D0RA00016G.
  • Matsushima, T., A. Sandanayaka, Y. Esaki, and C. Adachi. 2015. Vacuum-and-solvent-free fabrication of organic semiconductor layers for field-effect transistors. Scientific reports 5 (14547):1–9. doi:10.1038/srep14547.
  • Ono, T., Y. Tsukiyama, S. Hatanaka, Y. Sakatsume, T. Ogoshi, and Y. Hisaeda. 2019. Inclusion crystals as vapochromic chemosensors: Fabrication of a mini-sensor array for discrimination of small aromatic molecules based on side-chain engineering of naphthalenediimide derivatives. Journal of Materials Chemistry C 7 (31):9726–34. doi:10.1039/C9TC03140E.
  • Prat, D., A. Wells, J. Hayler, H. Sneddon, C. McElroy, S. Abou-Shehada, and P. Dunn. 2016. CHEM21 selection guide of classical- and less classical-solvents. Green Chemistry 18:288–96. doi:10.1039/C5GC01008J.
  • Ribeiro, L., T. Pinto, A. Monteiro, O. Soares, C. Pereira, C. Freire, and M. Pereira. 2013. Silica nanoparticles functionalized with a thermochromic dye for textile applications. JOURNAL OF MATERIALS SCIENCE 48 (14):5085–92. doi:10.1016/j.snb.2019.01.013.
  • Wang, X., Q. Lin, S. Ramachandran, G. Pembouong, R. B. Pansu, I. Leray, B. Lebental, and G. Zucchi. 2019. Optical chemosensors for metal ions in aqueous medium with polyfluorene derivatives: Sensitivity, selectivity and regeneration. Sensors and Actuators B: Chemical 286 (1):521–32. doi:10.1016/j.snb.2019.01.013.
  • Wenger, O. 2013. Vapochromism in organometallic and coordination complexes: Chemical sensors for volatile organic compounds. Chemical Reviews 113 (5):3686–733. doi:10.1021/cr300396p.
  • Wuthner, F., T. E. Kaiser, and C. R. Saha-Moller. 2011. J-aggregates: From serendipitous discovery to supra-molecular engineering of functional dye materials. Angewandte Chemie International Edition 50 (15):3376–410. doi:10.1002/anie.201002307.