2,237
Views
8
CrossRef citations to date
0
Altmetric
Review

A Review on Cellulose Fibers from Eichornia Crassipes: Synthesis, Modification, Properties and Their Composites

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Adeleke, G. E., et al. 2020. Chemical constituents of water hyacinth (Eichhornia crassipes) methanol leaf extract and its effect on selected enzymes of Periplaneta americana. Biotechnologia 101 (4):323–18. doi:10.5114/bta.2020.100424.
  • Ajithram, A., J. T. W. Jappes, and N. C. Brintha. 2021. “Water hyacinth (Eichhornia crassipes) natural composite extraction methods and properties - a review in materials today: Proceedings.” 45:1626–32, doi: 10.1016/j.matpr.2020.08.472.
  • AL-Hadeethi, M. A., B. M. Al-Obaidi, F. K. Khalaf, and B. H. Saleh, 2017. “Anatomical features of (Eichhornia Crassipes (mart.) Solms) growing in Iraq”. 8th International Conference on Agricultural, Environment, Biology and Medical Sciences(AEBMS-2017. ISBN 978-93-86878-07-6. 10.15242/HEAIG.C1217210.
  • Alzate, D. J. G., F. Christina, R. Peñafiel, and C. A. Binag. 2022. Polypyrrole on pineapple (Ananas comosus) and water hyacinth (Eichhornia crassipes) polyester blended textiles as promising electrode materials for supercapacitor applications. Materials Chemistry and Physics 279:125774. doi:10.1016/j.matchemphys.2022.125774.
  • Asrofi, M., H. Abral, A. Kasim, and A. Pratoto. 2017. XRD and FTIR studies of Nanocrystalline Cellulose from Water Hyacinth (Eichornia crassipes) Fiber. Journal of Metastable and Nanocrystalline Materials 29 (August):9–16. https://www.scientific.net/JMNM.29.9
  • Cerchiara, T., G. Chidichimo, M. C. Gallucci, and D. Vuono. 2010. Effects of extraction methods on the morphology and physico-chemical properties of Spanish broom (spartium junceum l.) fibres. Fibres and Textiles in Eastern Europe 80 (3):13–16.
  • Chonsakorn, S., S. Srivorradatpaisan, and R. Mongkholrattanasit. 2019. Effects of different extraction methods on some properties of water hyacinth fiber. Journal of Natural Fibers 16 (7):1015–25. doi:10.1080/15440478.2018.1448316.
  • Chow, M. F., and H. Hashrim, 2019. Analysis of the particle size distribution of runoff sediment transported from water hyacinth fiber mat. AIP Conference Proceedings 2129: July 2019 10.1063/1.5118023
  • Davies, R. M., and U. S. Mohammed. 2011. Moisture-dependent engineering properties of water Hyacinth parts. Singapore Journal of Scientific Research 1 (3):253–63. doi:10.3923/sjsres.2011.253.263.
  • Djafari Petroudy, S. R. 2017. Physical and mechanical properties of natural fibers. In Advanced high strength natural fibre composites in construction, ISBN 9780081004302, 59–83. The Netherland: Elsevier: Amsterdam.
  • Hasan, S. A., N. S. Pitol, M. I. Shams, and M. O. Hannan. 2020. Scope of medium density fiberboard (MDF) from water hyacinth (Eichhornia crassipes). V (X):123–27.
  • Herrera-Franco, P. J., and A. Valadez-González. 2005. A study of the mechanical properties of short natural-fiber reinforced composites. Composites Part B: Engineering 36 (8):597–608. 2005. doi:10.1016/j.compositesb.2005.04.001.
  • Islam, M. N., F. Rahman, A. S. Papri, M. O. Faruk, A. K. Das, et al. 2021. Water hyacinth (Eichhornia crassipes (Mart.) Solms.) as an alternative raw material for the production of bio-compost and handmade paper. Journal of environmental management 294 (15):113036. doi:10.1016/j.jenvman.2021.113036.
  • Istirokhatun, T., N. Rokhati, R. Rachmawaty, M. Meriyani, S. Priyanto, and H. Susanto. 2014. Cellulose Isolation from tropical water Hyacinth for membrane preparation. Procedia Environmental Sciences 23 (Ictcred 2014):274–81. 2015. doi:10.1016/j.proenv.2015.01.041.
  • Jirawattanasomkul, T., H. Minakawa, S. Likitlersuang, T. Ueda, J. Guo Dai, N. Wuttiwannasak, and N. Kongwang. 2021. Use of water hyacinth waste to produce fibre-reinforced polymer composites for concrete confinement: Mechanical performance and environmental assessment. Journal of Cleaner Production 292:126041. doi:10.1016/j.jclepro.2021.126041.
  • Karyanik, K., and N. H. Sari. 2016. Analisis Sifat Mekanik Material Komposit Ecenggondok Berbahan Filler Ampas Singkong Dengan Matrik Polyester. Rekayasa Energi Manufaktur 1 (1):17–22. doi:10.21070/r.e.m.v1i1.170.
  • Khan, A., R. Vijay, D. Lenin Singaravelu, M. R. Sanjay, S. Siengchin, F. Verpoort, K. A. Alamry, and A. M. Asiri. 2020. Characterization of natural fibers from Cortaderia Selloana Grass (Pampas) as reinforcement material for the production of the composites. Journal of Natural Fibers 18 (11):1893–901. doi:10.1080/15440478.2019.1709110.
  • Kumar, A., L. K. Singh, and S. Ghosh. 2009. Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresource Technology 100 (13):3293–97. 2009. doi:10.1016/j.biortech.2009.02.023.
  • Lara-Serrano, J. S., et al. 2016. Physicochemical characterization of water hyacinth (Eichhornia crassipes (Mart.) Solms). BioResources 11 (3):7214–23. doi:10.15376/biores.11.3.7214-7223.
  • Nugroho, S., and R. Ismail. 2020. Peningkatan Kekuatan Sifat Mekanis Komposit Serat Alam menggunakan Serat Enceng Gondok (Tinjauan Pustaka). Teknik 41 (1):27–39. doi:10.14710/teknik.v41i1.23473.
  • Pintor-Ibarra, L. F., J. Jesús Rivera-Prado, M. Ngangyo-Heya, and J. G. Rutiaga-Quiñones. 2018. Evaluation of the chemical components of Eichhornia crassipes as an alternative raw material for pulp and paper. BioResources 13 (2):2800–13. doi:10.15376/biores.13.2.2800-2813.
  • Prasetyaningrum, A., N. Rokhati, and K. Rahayu. 2009. Optimasi Proses Pembuatan Serat Eceng Gondok untuk Menghasilkan Komposit Serat dengan Kualitas Fisik dan Mekanik yang Tinggi. Riptek 3 (1):45–50.
  • Purboputro, P. I. 2017. Pengaruh Panjang Serat Terhadap Kekuatan Impak Komposit Enceng Gondok Dengan Matriks Poliester. Media Mesin: Majalah Teknik Mesin 7 (2):70–76. doi:10.23917/mesin.v7i2.3088.
  • Putri, L. D., and A. Mahyudin. 2019. Analisis Pengaruh Persentase Volume Serat Eceng Gondok dan Serat Pinang Terhadap Sifat Mekanik dan Biodegradasi Komposit Hibrid Matrik Epoksi. Jurnal Fisika Unand 8 (3):288–94. doi:10.25077/jfu.8.3.288-294.2019.
  • Qulub, B., I. Hanifi, H. Purwanto, and J. M. Tengah. 2017. “Pengaruh variasi susunan serat eceng gondok (eichhornia crassipes) dengan resin polyester sebagai bahan komposit alternatif rompi anti peluru.” Skripsi (thesis) Universitas Wahid Hasyim Semarang.
  • Raghunathan, V., J. D. J. Dhilip, G. Subramanian, H. Narasimhan, C. Baskar, A. Murugesan, A. Khan, and A. A. Otaibi. 2021. Influence of chemical treatment on the Physico-mechanical characteristics of natural fibers extracted from the barks of Vachellia Farnesiana. Journal of Natural Fibers 19 (13):1–11. doi:10.1080/15440478.2021.1875353.
  • Ravikumar, P., G. Rajeshkumar, P. Manimegalai, K. R. Sumesh, M. R. Sanjay, and S. Siengchin. 2022. Delamination and surface roughness analysis of jute/polyester composites using response surface methodology: Consequence of sodium bicarbonate treatment. 51 (1S): 360S–77S. doi:10.1177/15280837221077040.
  • Saha, M., and A. M. Afsar. 2018. Thermo-Mechanical and morphological properties of water Hyacinth reinforced Polypropylene composites. International Journal of Engineering Materials and Manufacture 3 (3):151–61. doi:10.26776/ijemm.03.03.2018.04.
  • Sangeetha, K., and M. Bhuvaneshwari. 2016. Dexamethasone promotes hypertrophy of H9C2 cardiomyocytes through calcineurin B pathway, independent of NFAT activation. 411 (1–2):241–52. doi:10.1007/s11010-015-2586-9.
  • Sari, N. H. 2018. Kekuatan Mekanik Komposit Diperkuat Serat Alam Selulosa Kekuatan mekanik komposit diperkuat serat alam selulosa. Dinamika Teknik Mesin 6 (April):52–57. doi:10.22441/jtm.v7i2.2373.
  • Sari, N. H., and Y. A. Padang. 2019. The characterization tensile and thermal properties of hibiscus tiliaceus cellulose fibers. IOP Conference Series: Materials Science and Engineering 539 (1):012031. doi:10.1088/1757-899X/539/1/012031.
  • Sari, N. H., I. N. G. Wardana, Y. S. Irawan, and E. Siswanto. 2018. Characterization of the chemical, physical, and mechanical properties of NaOH-treated natural Cellulosic fibers from corn husks. Journal of Natural Fibers 15 (4):545–58. doi:10.1080/15440478.2017.1349707.
  • Sittinun, A., P. Pisitsak, and S. Ummartyotin. 2020. Improving the oil sorption capability of porous polyurethane composites by the incorporation of cellulose fibers extracted from water hyacinth. Composites Communications 20:100351. doi:10.1016/j.coco.2020.04.017.
  • Soenjaya, S. A., N. Handoyo, F. E. Soetaredjo, A. E. Angkawijaya, Y. -H. Ju, and S. Ismadji. 2015. Preparation of carbon fiber from water hyacinth liquid tar. International Journal of Industrial Chemistry 6 (1):1–7. doi:10.1007/s40090-014-0026-4.
  • Spiridon, I., C. A. Teacă, and R. Bodîrlău. 2011. Pretreatment with ionic liquids. BioResources 6 (1):400–13. doi:10.15376/biores.6.1.400-413.
  • Sumesh, K. R., K. Kanthavel, and V. Kavimani. 2020. Peanut oil cake-derived cellulose fiber: Extraction, application of mechanical and thermal properties in pineapple/flax natural fiber composites. International Journal of Biological Macromolecules 150 (1):775–85. doi:10.1016/j.ijbiomac.2020.02.118.
  • Sumesh, K. R., G. Saikrishnan, P. Pandiyan, L. Prabhu, S. Gokulkumar, A. K. Priya, P. Spatenka, and S. Krishna. 2022. The influence of different parameters in tribological characteristics of pineapple/sisal/TiO2 filler incorporation. Journal of Industrial Textiles 51 (5S):8626S–44S. doi:10.1177/15280837211022614.
  • Sundari, M. T., and A. Ramesh. 2011. Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth—eichhornia crassipes. Carbohydrate Polymers 87 (2):1701–05. doi:10.1016/j.carbpol.2011.09.076.
  • Tan, L., D. Zhu, W. Zhou, W. Mi, L. Ma, and W. He. 2008. Preferring cellulose of Eichhornia crassipes to prepare xanthogenate to other plant materials and its adsorption properties on copper. Bioresource Technology 99 (10):4460–66. doi:10.1016/j.biortech.2007.08.022.
  • Wolok, E., I. H. Lahay, B. R. Machmoed, and F. Pakaya. 2018. Porositas dan kandungan selulosa serat eceng gondok (Eichhornia crassipes). Seminor Nasional Teknologi dan Rekayasa 2018.
  • Yudo, H., and K. Kiryanto. 2012. Analisa Teknis Rekayasa Serat Eceng Gondok Sebagai Bahan Pembuatan Komposit Ditinjau Dari Kekuatan Tarik. Kapal 5 (1):37–41. doi:10.12777/kpl.5.1.37-41.
  • Zhou, W., D. Zhu, A. Langdon, L. Li, S. Liao, and L. Tan. 2009. The structure characterization of cellulose xanthogenate derived from the straw of Eichhornia crassipes. Bioresource Technology 100 (21):5366–69. doi:10.1016/j.biortech.2009.05.066.