1,346
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Response Surface Methodology Optimization of Palm Rachis Biochar Content and Temperature Effects on Predicting Bio-Mortar Compressive Strength, Porosity and Thermal Conductivity

ORCID Icon, ORCID Icon, , ORCID Icon &

References

  • Achour, A., F. Ghomari, and N. Belayachi. 2017. Properties of cementitious mortars reinforced with natural fibers. Journal of Adhesion Science and Technology 31 (17):1938–20. doi:10.1080/01694243.2017.1290572.
  • Ahmad, S., R. Khushnood, P. Jagdale, J. M. Tulliani, and G. A. Ferro. 2015. High performance self-consolidating cementitious composites by using micro carbonized bamboo particles. Materials & Design 76:223–29. doi:10.1016/j.matdes.2015.03.048.
  • Akhtar, A., and A. Sarmah. 2018. Novel biochar-concrete composites: manufacturing, characterization and evaluation of the mechanical properties. The Science of the Total Environment 616–617:408–16. doi:10.1016/j.scitotenv.2017.10.319.
  • Aziminezhad, M., M. Mahdikhani, and M. Memarpour. 2018. RSM-based modeling and optimization of self-consolidating mortar to predict acceptable ranges of rheological properties. Construction and Building Materials 189:1200–13. doi:10.1016/j.conbuildmat.2018.09.019.
  • Belaadi, A., M. Boumaaza, H. Alshahrani, and M. Bourchak. 2023. Optimization of Palm Rachis Biochar Waste Content and Temperature Effects on Predicting Bio-Mortar : ANN and RSM Modelling. Journal of Natural Fibers 20 (1):2151547. doi:10.1080/15440478.2022.2151547.
  • Belaadi, A., M. Boumaaza, S. Amroune, and M. Bourchak. 2020. Mechanical characterization and optimization of delamination factor in drilling bidirectional jute fibre-reinforced polymer biocomposites. International Journal of Advanced Manufacturing Technology 111 (7–8):2073–94. doi:10.1007/s00170-020-06217-6.
  • Benzannache, N., A. Belaadi, M. Boumaaza, and M. Bourchak. 2021. Improving the mechanical performance of biocomposite plaster/washingtonian filifira fibres using the RSM method. Journal of Building Engineering 33:33. doi:10.1016/j.jobe.2020.101840.
  • Boumaaza, M., A. Belaadi, and M. Bourchak. August 2021. The Effect of Alkaline Treatment on Mechanical Performance of Natural Fibers-Reinforced Plaster: Part II Optimization Comparison between ANN and RSM Statistics. Journal of Natural Fibers 19(14):1–16. doi: 10.1080/15440478.2021.1964129.
  • Boumaaza, M., A. Belaadi, and M. Bourchak. 2022a. The effect of alkaline treatment on mechanical performance of natural fibers-reinforced plaster: Optimization using RSM. Journal of Natural Fibers 18 (12):2220–40. doi:10.1080/15440478.2020.1724236.
  • Boumaaza, M., A. Belaadi, and M. Bourchak. 2022b. Systematic review on reinforcing mortars with natural fibers: Challenges of environment-friendly option. Journal of Natural Fibers 0 (0):1–25. doi:10.1080/15440478.2022.2060408.
  • Boumaaza, M., A. Belaadi, M. Bourchak, M. Jawaid, and H. Satha. 2022. Comparative study of flexural properties prediction of washingtonia filifera rachis biochar Bio-Mortar by ANN and RSM models. Construction and Building Materials 318:125985. doi:10.1016/j.conbuildmat.2021.125985.
  • Dashti, J., and M. Nematzadeh. 2020. Compressive and direct tensile behavior of concrete containing Forta-Ferro fiber and calcium aluminate cement subjected to sulfuric acid attack with optimized design. Construction and Building Materials 253:118999. doi:10.1016/j.conbuildmat.2020.118999.
  • Gupta, S., and H. W. Kua. 2018. Effect of water entrainment by pre-soaked biochar particles on strength and permeability of cement mortar. Construction and Building Materials 159:107–25. doi:10.1016/j.conbuildmat.2017.10.095.
  • Gupta, S., H. Kua, and H. Koh. 2018. Application of Biochar from Food and Wood Waste as Green Admixture for Cement Mortar. The Science of the Total Environment 619–620:419–35. doi:10.1016/j.scitotenv.2017.11.044.
  • Gupta, S., H. Kua, and C. Low. 2018. Use of biochar as carbon sequestering additive in cement mortar. Cement and Concrete Composites 87:110–29. doi:10.1016/j.cemconcomp.2017.12.009.
  • Gupta, S., H. Kua, and S. Pang. 2018. Biochar-mortar composite: manufacturing, evaluation of physical properties and economic viability. Construction and Building Materials 167:874–89. doi:10.1016/j.conbuildmat.2018.02.104.
  • Hammoudi, A., K. Moussaceb, C. Belebchouche, and F. Dahmoune. 2019. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Construction and Building Materials 209:425–36. doi:10.1016/j.conbuildmat.2019.03.119.
  • Kursuncu, B., O. Gencel, O. Y. Bayraktar, J. Shi, M. Nematzadeh, and G. Kaplan. 2022. Optimization of foam concrete characteristics using response surface methodology and artificial neural networks. Construction and Building Materials 337:127575. doi:10.1016/j.conbuildmat.2022.127575.
  • Li, Z., D. Lu, and X. Gao. 2020. Multi-objective optimization of gap-graded cement paste blended with supplementary cementitious materials using response surface methodology. Construction and Building Materials 248:118552. doi:10.1016/j.conbuildmat.2020.118552.
  • Maljaee, H., H. Paiva, R. Madadi, L. Tarelho, M. Morais, and V. Ferreira. 2021. Effect of cement partial substitution by waste-based biochar in mortars properties. Construction and Building Materials 301:124074. doi:10.1016/j.conbuildmat.2021.124074.
  • Nematzadeh, M., A. Maghferat, and M. R. Z. Herozi. 2021. Mechanical properties and durability of compressed nylon aggregate concrete reinforced with forta-ferro fiber: Experiments and optimization. Journal of Building Engineering 41:102771. doi:10.1016/j.jobe.2021.102771.
  • Onorevoli, B., G. da Silva Maciel, M. Machado, V. Corbelini, E. Caramão, and R. Jacques. 2018. Characterization of feedstock and biochar from energetic tobacco seed waste pyrolysis and potential application of biochar as an adsorbent. Journal of Environmental Chemical Engineering 6 (1):1279–87. doi:10.1016/j.jece.2018.01.039.
  • Praneeth, S., L. Saavedra, M. Zeng, B. Dubey, and A. Sarmah. 2021. Biochar admixtured lightweight, porous and tougher cement mortars: Mechanical, durability and micro computed tomography analysis. The Science of the Total Environment 750:142327. doi:10.1016/j.scitotenv.2020.142327.
  • Shi, S., L. Cai, Y. Weng, D. Wang, and Y. Sun. 2019. Comparative life-cycle assessment of water supply pipes made from Bamboo vs. Polyvinyl Chloride. Journal of Cleaner Production 240:118172. doi:10.1016/j.jclepro.2019.118172.
  • Sirico, A., P. Bernardi, C. Sciancalepore, F. Vecchi, A. Malcevschi, B. Belletti, and D. Milanese. 2021. Biochar from wood waste as additive for structural concrete. Construction and Building Materials 303:124500. doi:10.1016/j.conbuildmat.2021.124500.
  • Sultana, N., S. Zakir Hossain, M. Alam, M. Islam, and M. Al Abtah. 2020. Soft computing approaches for comparative prediction of the mechanical properties of jute fiber reinforced concrete. Advances in Engineering Software 149:102887. doi:10.1016/j.advengsoft.2020.102887.
  • Tan, K., X. Pang, Y. Qin, and J. Wang. 2020. Properties of cement mortar containing pulverized biochar pyrolyzed at different temperatures. Construction and Building Materials 263:120616. doi:10.1016/j.conbuildmat.2020.120616.
  • Tayebi, M., and M. Nematzadeh. 2021. Effect of hot-compacted waste nylon fine aggregate on compressive stress-strain behavior of steel fiber-reinforced concrete after exposure to fire: Experiments and optimization. Construction and Building Materials 284:122742. doi:10.1016/j.conbuildmat.2021.122742.
  • Woolf, D., J. E. Amonette, F. A. Street-Perrott, J. Lehmann, and S. Joseph. 2010. Sustainable biochar to mitigate global climate change. Nature Communications 1. doi:10.1038/ncomms1053.
  • Zeidabadi, Z., S. Bakhtiari, H. Abbaslou, and A. Ghanizadeh. 2018. Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Construction and Building Materials 181:301–08. doi:10.1016/j.conbuildmat.2018.05.271.