1,448
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of Artificial Neural Network Predicted Mechanical Properties of Jute and Bamboo Fiber Reinforced Concrete Along with Silica Fume

, &

References

  • Açikgenç, M., M. Ulaş, and K. Esat Alyamaç. 2014. Using an artificial neural network to predict mix compositions of steel fibre-reinforced concrete. Arabian Journal for Science and Engineering 40 (2):407–19. doi:10.1007/S13369-014-1549-X.
  • Afreen Bashir, C. G., M. Abubakr, S. Abba, and A. SI. 2018. Analysis of bamboo fibre reinforced beam. Journal of Steel Structures & Construction 4 (2):146. doi:10.4172/2472-0437.1000146.
  • Ajith, G., S. Kumar, and A. Elayaperumal. 2014. Experimental investigations on mechanical properties of jute fibre reinforced composites with polyester and epoxy resin matrices. Procedia Engineering 97 (January):2052–63. doi:10.1016/J.PROENG.2014.12.448.
  • Amir, S., and D. Daniel, and Azar Bahman Farahmand. 2019. Prediction of bond strength between concrete and rebar under corrosion using ANN. Computers and Concrete 23(4): 273–79. doi:10.12989/cac.2019.23.4.273.
  • Awoyera, P. O., A. V. Mehmet Serkan Kirgiz, D. Ovallos-Gazabon, and D. Ovallos-Gazabon. 2020. Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques. Journal of Materials Research and Technology 9 (4):9016–28. doi:10.1016/J.JMRT.2020.06.008.
  • Chandwani, V., V. Agrawal, and R. Nagar. 2014. Applications of artificial neural networks in modeling compressive strength of concrete: A state of the art review. Research Article International Journal of Current Engineering and Technology Accepted 4 (4):2949–56. doi:10.1155/2014/629137.
  • Chopra, P., R. Kumar Sharma, and M. Kumar. 2016. Prediction of compressive strength of concrete using artificial neural network and genetic programming. Advances in Materials Science and Engineering 2016 (7648467):1–10. doi:10.1155/2016/7648467.
  • Dayananda, N., K. Gowda, and E. Prasad. 2018. A study on compressive strength attributes of jute fibre reinforced cement concrete composites. IOP Conference Series: Materials Science and Engineering 376 (012069):012069. doi:10.1088/1757-899X/376/1/012069.
  • Dewi, S. M., M. Narto Wijaya, and N. Christin Remayanti. 2017. The use of bamboo fibre in reinforced concrete beam to reduce crack. AIP Conference Proceedings, 1887. 020003. doi:10.1063/1.5003486.
  • Dhanapal, J., and S. Jeyaprakash. 2020. Mechanical properties of mixed steel fibre reinforced concrete with the combination of micro and macro steel fibres. Structural Concrete 21 (1):458–67. doi:10.1002/SUCO.201700219.
  • Fasihihour, N., J. Mohebbi, N. Abad, A. Karimipour, and M. Reza Mohebbi. 2022. Experimental and numerical model for mechanical properties of concrete containing fly ash: Systematic review. Measurement 188:110547. doi:10.1016/j.measurement.2021.110547.
  • Gu, F., Y. Zheng, W. Zhang, X. Yao, D. Pan, A. Sze Mun Wong, J. Guo, P. Hall, and N. Sharmin. 2018. Can bamboo fibres be an alternative to flax fibres as materials for plastic reinforcement? A comparative life cycle study on polypropylene/flax/bamboo laminates. Industrial Crops and Products 121 (October):372–87. doi:10.1016/J.INDCROP.2018.05.025.
  • Hodhod, O. A., M. S. Khalafalla, and M. S. M. Osman. 2019. ANN models for nano silica/silica fume concrete strength prediction. Water Science 33 (1):118–27. doi:10.1080/11104929.2019.1669005.
  • Hussain, T., and M. Ali. 2019. Improving the impact resistance and dynamic properties of jute fibre reinforced concrete for rebars design by considering tension zone of FRC. Construction and Building Materials 213 (20 July 2019):592–607. doi:10.1016/J.CONBUILDMAT.2019.04.036.
  • Islam, M. S., and S. J. Ahmed. 2018. Influence of jute fibre on concrete properties. Construction and Building Materials 189:768–76. doi:10.1016/j.conbuildmat.2018.09.048.
  • Kalali, E. N., H. Yixin, X. Wang, L. Song, and W. Xing. 2019. Highly-aligned cellulose fibres reinforced epoxy composites derived from bulk natural bamboo. Industrial Crops and Products 129 (March 2019):434–39. doi:10.1016/J.INDCROP.2018.11.063.
  • Karimipour, A., J. Mohebbi Najm Abad, and N. Fasihihour. 2021. Predicting the load-carrying capacity of GFRP-reinforced concrete columns using ANN and evolutionary strategy. Composite Structures 17:114470. doi:10.1016/j.measurement.2021.110547.
  • Karthiyaini, S., K. Senthamaraikannan, J. Priyadarshini, K. Gupta, and M. Shanmugasundaram. 2019. Prediction of mechanical strength of fibre admixed concrete using multiple regression analysis and artificial neural network. Advances in Materials Science and Engineering 2019 (4654070):1–7. doi:10.1155/2019/4654070.
  • Khan, M., and M. Ali. 2019. Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Construction and Building Materials 203.174–87. (10 April 2019). doi:10.1016/J.CONBUILDMAT.2019.01.103.
  • Kim, J., C. Park, Y. Choi, H. Lee, and G. Song. 2012. An investigation of mechanical properties of jute fibre-reinforced concrete. RILEM Bookseries 2. 75–82. Springer. doi:10.1007/978-94-007-2436-5_10.
  • Köksal, F., F. Altun, I. Yiǧit, and Y. Şahin. 2008. Combined effect of silica fume and steel fibre on the mechanical properties of high strength concretes. Construction and Building Materials 22 (8):1874–80. doi:10.1016/J.CONBUILDMAT.2007.04.017.
  • Kumar, V. 2021. Strength characteristics of jute fibre composite concrete. International Journal of Engineering Research & Technology 5 (8):1–3.
  • Kumar, G. S., and K. Rajasekhar. 2017. Performance analysis of Levenberg-Marquardt and steepest descent algorithms based ANN to predict compressive strength of SIFCON using manufactured sand. Engineering Science and Technology, an International Journal 20 (4):1396–405. doi:10.1016/J.JESTCH.2017.07.005.
  • Kundu, S. P., S. Chakraborty, and S. Chakraborty. 2018. Effectiveness of the surface modified jute fibre as fibre reinforcement in controlling the physical and mechanical properties of concrete paver blocks. Construction and Building Materials 191 (10 December 2018):554–63. doi:10.1016/J.CONBUILDMAT.2018.10.045.
  • Malathy, R., I. Min Chung, and M. Prabakaran. 2020. Characteristics of fly ash based concrete prepared with bio admixtures as internal curing agents. Construction and Building Materials 262 (30 November 2020):120596. doi:10.1016/j.conbuildmat.2020.120596.
  • Marrero, R., H. Soto Toro, F. Benítez, C. Medina, and O. M. Suárez. 2017. Study of high-strength concrete reinforced with bamboo fibres. Materials for Energy, Efficiency and Sustainability: TechConnect Briefs 301–04.
  • Momoh, E. O., and A. Israel Osofero. 2019. Behaviour of oil palm broom fibres (OPBF) reinforced concrete. Construction and Building Materials 221 (10 October 2019):745–61. doi:10.1016/J.CONBUILDMAT.2019.06.118.
  • Pasnur, P. K., and S. B. Shetye. 2018. Effect of blend of silica fume and sisal fibre on performance of concrete. Journal of Advances and Scholarly Researches in Allied Education 15 (2):641–47. doi:10.29070/15/56944.
  • Rahman, S., and A. Azad. 2018. Investigation on mechanical strength of jute fibre reinforced concrete (JFRC) compared to plain concrete. International Journal of Scientific Engineering Research 9:560–64.
  • Rajan, A., S. Chitra, V. Hemapriya, I.M. Chung, S. H. Kim, and M. Prabakaran. 2019. Implications of eco-addition inhibitor to mitigate corrosion in reinforced steel embedded in concrete. Construction and Building Materials 213 (20 July 2019):246–56. doi:10.1016/J.CONBUILDMAT.2019.04.046.
  • Ramakrishna, G., and T. Sundararajan. 2019, January. Long-term strength and durability evaluation of sisal fibre composites. In Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites, 211–55. Woodhead Publishing Series in Composites Science and Engineering. doi:10.1016/B978-0-08-102290-0.00010-6.
  • Sen, T., and J. Reddy. 2011. Application of sisal, bamboo, coir and jute natural composites in structural upgradation. International Journal of Innovation, Management and Technology 2 (3):186–91. doi:10.7763/IJIMT.2011.V2.129.
  • Sofat, V., A. Khadwal, and S. Meerwal. 2017. An experimental study to check compressive strength of concrete by using jute fibres as reinforcement. International Journal of Earth Sciences and Engineering 10 (2):450–54. doi:10.21276/ijee.2017.10.0248.
  • Sridhar, J., R. Gobinath, and M. Serkan Kırgız. 2022. Comparative study for efficacy of chemically treated jute fibre and bamboo fibre on the properties of reinforced concrete beams. Journal of Natural Fibres 19:12224–34. doi:10.1080/15440478.2022.2054894.
  • Sultana, N., S. Z. Hossain, M. S. Alam, M. Hashish, and M. Islam. 2020b. An experimental investigation and modeling approach of response surface methodology coupled with crow search algorithm for optimizing the properties of jute fibre reinforced concrete. Construction and Building Materials 243:118216. doi:10.1016/j.conbuildmat.2020.118216.
  • Sultana, N., S. Z. Hossain, M. S. Alam, M. Islam, and M. A. Al Abtah. 2020a. Soft computing approaches for comparative prediction of the mechanical properties of jute fibre reinforced concrete. Advances in Engineering Software 149:102887. doi:10.1016/j.advengsoft.2020.102887.
  • Wahyuni, A. S., F. Supriani, Elhusna, and A. Gunawan, 2014. The performance of concrete with rice husk ash, sea shell ash and bamboo fibre addition. Procedia Engineering 95:473–78. doi:10.1016/J.PROENG.2014.12.207.
  • Yan, L., N. Chouw, L. Huang, and B. Kasal. 2016. Effect oF alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Construction and Building Materials 112 (01 June 2016):168–82. doi:10.1016/J.CONBUILDMAT.2016.02.182.
  • Zakaria, M., M. Ahmed, M. Mozammel Hoque, and A. Hannan. 2015. Effect of jute yarn on the mechanical behavior of concrete composites. SpringerPlus 4 (1):1–8. doi:10.1186/s40064-015-1504-7.
  • Zakaria, M., M. Ahmed, M. Mozammel Hoque, and S. Islam. 2017. Scope of using jute fibre for the reinforcement of concrete material. Textiles and Clothing Sustainability 2 (1):1–10. doi:10.1186/S40689-016-0022-5.