935
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Investigation of Static and Dynamic Mechanical Properties of Coconut Tree Primary Flower Leaf Stalk Fiber Reinforced Polymer Composites

, , &

References

  • Belouadah, Z., M. Rokbi, and A. Ati. 2020. Manufacturing and characterization of new composite based on epoxy resin and lygeum spartum L. plant. Journal of Natural Fibers 19 (11):1–16. doi:10.1080/15440478.2020.1856273.
  • Bhuvaneshwaran, M., S. P. Pavayee Subramani, S. K. Palaniappan, S. K. Pal, and S. Balu. 2021. Natural cellulosic fiber from coccinia indica stem for polymer composites: Extraction and characterization. Journal of Natural Fibers 18 (5):644–52. doi:10.1080/15440478.2019.1642826.
  • Bisanda, E. T. N., and P. A. Martin. 1992. Properties of sisal-CNSL composites. Journal of Materials Science 27:1690–700. doi:10.1007/BF00542934.
  • Biswas, S., S. Kindo, and A. Patnaik. 2011. Effect of fiber length on mechanical behavior of coir fiber reinforced epoxy composites. Fibers and Polymers 12 (1):73–78. doi:10.1007/s12221-011-0073-9.
  • Dahy, H. 2019. Natural fibre-reinforced polymer composites (NFRP) fabricated from lignocellulosic fibres for future sustainable architectural applications, case studies: Segmented-shell construction, acoustic panels, and furniture. Sensors 19 (3):738. doi:10.3390/s19030738.
  • Gu, H. 2009. Dynamic mechanical analysis of the seawater treated glass/polyester composites. Materials & Design 30 (7):2774–77. doi:10.1016/j.matdes.2008.09.029.
  • Gurunathan, T., S. Mohanty, and S. K. Nayak. 2015. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A, Applied Science and Manufacturing 77 (77):1–25. doi:10.1016/j.compositesa.2015.06.007.
  • Herlina, S. N., I. N. G. Wardana, Y. S. Irawan, and E. Siswanto. 2018. Characterization of the chemical, physical, and mechanical properties of NaOH-treated natural cellulosic fibers from corn husks. Journal of Natural Fibers 15 (4):545–58. doi:10.1080/15440478.2017.1349707.
  • Jawaid, M., H. P. S. Abdul Khalil, A. Hassan, R. Dungani, and A. Hadiyane. 2013. Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Composites Part B: Engineering 45 (1):619–24. doi:10.1016/j.compositesb.2012.04.068.
  • Karimah, A., M. R. Ridho, S. S. Munawar, Y. Amin, R. Damayanti, M. A. Rahandi Lubis, A. P. Wulandari, A. H. Iswanto, and A. Fudholi. 2021. A comprehensive review on natural fibers: Technological and socio-economical aspects. Polymers 13 (24):4280. doi:10.3390/polym13244280.
  • Kumar, S. M., D. Suresh, and K. Subramanian. 2014. Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Materials & Design 59:63–69. doi:10.1016/j.matdes.2014.02.013.
  • Li, X., L. G. Tabil, and S. Panigrahi. 2007. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. Journal of Polymers and the Environment 15 (1):25–33. doi:10.1007/s10924-006-0042-3.
  • Mahalingam, J. 2022. Mechanical, thermal, and water absorption properties of hybrid short coconut tree primary flower leaf stalk fiber/glass fiber-reinforced unsaturated polyester composites for biomedical applications. Biomass Conversion and Biorefinery 1–12. doi:10.1007/s13399-022-02958-4.
  • Mohammed, L., M. Nm Ansari, G. Pua, M. Jawaid, and M. Saiful Islam. 2015. A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science. 1–15. doi:10.1002/SICI1098-232919992418:4<351:AID-ADV6>3.0.CO;2-X
  • Mohanty, S., S. K. Verma, and S. K. Nayak. 2006. Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Composites Science and Technology 66 (3–4):538–47. doi:10.1016/j.compscitech.2005.06.014.
  • Mulinari, D. R., C. A. R. P. Baptista, J. V. C. Souza, and H. J. C. Voorwald. 2011. Mechanical properties of coconut fibers reinforced polyester composites. Procedia Engineering 10:2074–79. doi:10.1016/j.proeng.2011.04.343.
  • Muruganrama, T., J. Mahalingam, S. Dharmalingam, and S. Natarajan. 2020. Investigation of static and dynamic mechanical properties of short palmyra palm leaf stalk fiber (PPLSF) reinforced polymer composites. Journal of Natural Fibers 19 (5):1–17. doi:10.1080/15440478.2020.1840478.
  • Prades, A., R. R. Ablan Assa, M. Dornier, J. Pierre Pain, and R. Boulanger. 2012. Characterisation of the volatile profile of coconut water from five varieties using an optimised HS-SPME-GC analysis. Journal of the Science of Food and Agriculture 92:2471–78. doi:10.1002/jsfa.5655.
  • Ray, D., B. K. Sarkar, S. Das, and A. K. Rana. 2002. Dynamic mechanical and thermal analysis of vinylester-resin-matrix composites reinforced with untreated and alkali-treated jute fibers. Composites Science and Technology 62 (7–8):911–17. doi:10.1016/S0266-3538(02)00005-2.
  • Rehman, M. M., M. Zeeshan, K. Shaker, and Y. Nawab. 2019. Effect of micro-crystalline cellulose particles on mechanical properties of alkaline treated jute fabric reinforced green epoxy composite. Cellulose 26 (17):9057–69. doi:10.1007/s10570-019-02679-4.
  • Saheb, D. N., and J. P. Jog. 1999. Natural fiber polymer composites: A review. Advances in polymer technology. Journal of the Polymer Processing Institute 18:351–63.
  • Sari, N. H., R. A. Ilyas, E. Syafri, and S. Indran. 2021. Characterization of the density and mechanical properties of corn husk fiber reinforced polyester composites after exposure to ultraviolet light. Functional Composites and Structures 3 (3):034001. doi:10.1088/2631-6331/ac0ed3.
  • Sari, N. H., I. N. Wardana, Y. S. Irawan, and E. Siswanto. 2017. Corn husk fiber-polyester composites as sound absorber: Nonacoustical and acoustical properties. Advances in Acoustics and Vibration 2017:1–7. doi:10.1155/2017/4319389.
  • Sathishkumar, T. P., P. Navaneethakrishnan, and S. Shankar. 2012. Tensile and flexural properties of snake grass natural fiber reinforced isophthalic polyester composites. Composites Science and Technology 72 (10):1183–90. doi:10.1016/j.compscitech.2012.04.001.
  • Satyanarayana, K. G., G. G. Arizaga, and F. Wypych. 2008. Biodegradable composites based on lignocellulosic fibers-an overview. Progress in Polymer Science 34 (9):982–1021. doi:10.1016/j.progpolymsci.2008.12.002.
  • Satyanarayana, K. G., C. K. S. Pillai, K. Sukumaran, S. G. K. Pillai, P. K. Rohatgi, and K. Vijayan. 1982. Structure property studies of fibres from various parts of the coconut tree. Journal of Materials Science 17 (8):2453–62. doi:10.1007/BF00543759.
  • Shaker, K., R. M. Ullah Khan, M. Jabbar, M. Umair, A. Tariq, M. Kashif, and Y. Nawab. 2020. Extraction and characterization of novel fibers from Vernonia elaeagnifolia as a potential textile fiber. Industrial Crops and Products 250 (152):112518. doi:10.1016/j.indcrop.2020.112518.
  • Shaker, K., M. Umair, S. Shahid, M. Jabbar, R. M. Waseem Ullah Khan, M. Zeeshan, and Y. Nawab. 2020. Cellulosic fillers extracted from argyreia speciose waste: A potential reinforcement for composites to enhance properties. Journal of Natural Fibers 19 (11):1–13. doi:10.1080/15440478.2020.1856271.
  • Shanmugam, D., and M. Thiruchitrambalam. 2014. Influence of alkali treatment and layering pattern on the tensile and flexural properties of palmyra palm leaf stalk fiber (PPLSF)/jute fiber polyester hybrid composites. Composite Interfaces 21 (1):3–12. doi:10.1080/15685543.2013.830513.
  • Silva, D. A., N. Chawla, and R. D. de Toledo Filho. 2008. Tensile behavior of high performance natural (sisal) fibers. Composites Science and Technology 68 (15–16):3438–43. doi:10.1016/j.compscitech.2008.10.001.
  • Syafri, E., N. H. Sari, M. Mahardika, P. Amanda, and R. A. Ilyas. 2021. Isolation and characterization of cellulose nanofibers from agave gigantea by chemical-mechanical treatment. International Journal of Biological Macromolecules 200 (25):333. doi:10.1016/j.ijbiomac.2021.12.111.
  • Thirumurugan, R., M. Jayaraj, D. Shanmugam, and T. Ramkumar. 2019. Characterization of new natural cellulosic fiber from coconut tree primary flower leaf stalk fiber (CPFLSF). Journal of Natural Fibers 18 (11):1–13. doi:10.1080/15440478.2019.1701608.
  • Venkataswamy, M. A., C. K. S. Pillai, V. S. Prasad, and K. G. Satyanarayana. 1987. Effect of weathering on the mechanical properties of midribs of coconut leaves. Journal of Materials Science 22 (9):3167–72. doi:10.1007/BF01161178.
  • Zhang, M. Q., M. Z. Rong, and X. Lu. 2005. Fully biodegradable natural fiber composites from renewable resources: All-plant fiber composites. Composites Science and Technology 65:15–16. doi:10.1016/j.compscitech.2005.06.018.