938
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The Chromosome-Level Assembly of Ramie (Boehmeria Nivea L.) Genome Provides Insights into Molecular Regulation of Fiber Fineness

, , , , , , , , , , , , , & show all

References

  • Brims, M., and H. Hornik. 2000. Rapid image processing for measuring fiber characteristics. International Fiber Journal 15 (5):63–12.
  • Cai, S., and C. C. Lashbrook. 2006. Laser capture microdissection of plant cells from tape-transferred paraffin sections promotes recovery of structurally intact RNA for global gene profiling. The Plant Journal 48 (4):628–37. doi:10.1111/j.1365-313X.2006.02886.x.
  • Chin, C. S., P. Peluso, F. J. Sedlazeck, M. Nattestad, G. T. Concepcion, A. Clum, C. Dunn, R. O’Malley, R. Figueroa-Balderas, A. Morales-Cruz, et al. 2016. Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods 13 (12):1050–54. doi:10.1038/nmeth.4035.
  • De Bie, T., N. Cristianini, J. P. Demuth, and M. W. Hahn. 2006. CAFE: A computational tool for the study of gene family evolution. Bioinformatics 22 (10):1269–71. doi:10.1093/bioinformatics/btl097.
  • Edgar, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32 (5):1792–97. doi:10.1093/nar/gkh340.
  • Liu, C., L. B. Zeng, S. Y. Zhu, L. Q. Wu, Y. Z. Wang, S. W. Tang, H. W. Wang, et al. 2018. Draft genome analysis provides insights into the fiber yield, crude protein biosynthesis, and vegetative growth of domesticated ramie (Boehmeria nivea L. Gaud). DNA Research 25 (2):173–81. doi:10.1093/dnares/dsx047.
  • Luan, M. B., J. B. Jian, P. Chen, J. H. Chen, J. H. Chen, Q. Gao, G. Gao, J. H. Zhou, K. M. Chen, X. M. Guang, et al. 2018. Draft genome sequence of ramie, Boehmeria nivea (L.) gaudich. Molecular Ecology Resources 18 (3):639–45. doi:10.1111/1755-0998.12766.
  • Ouyang, Y. 2016. Effects of ethephon and paclobutrazol applications on ramie yield and fiber quality. Dissertation of Huazhong Agricultural University, Wuhan, China 2:1–62.
  • Peng, D. X., and Z. S. Yang. 1986. Studies of photosynthetic characteristics in relation to yield and fiber properties in ramie. Journal of Huazhong Agricultural University 5 (1):56–61.
  • Prescott, A., and P. John. 1996. DIOXYGENASES: Molecular structure and role in plant metabolism. Annual Review Plant Physiology Plant Molecular Biology 47 (1):245–71. doi:10.1146/annurev.arplant.47.1.245.
  • Qin, Y. M., C. Y. Hu, Y. Pang, A. J. Kastaniotis, J. K. Hiltunen, and Y. X. Zhu. 2007. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. The Plant Cell 19 (11):3692–704. doi:10.1105/tpc.107.054437.
  • Qin, Y. M., C. Y. Hu, and Y. X. Zhu. 2008. The ascorbate peroxidase regulated by H2O2 and ethylene is involved in cotton fiber cell elongation by modulating ROS homeostasis. Plant Signaling Behavior 3 (3):194–96. doi:10.4161/psb.3.3.5208.
  • Shakeel, S. N., X. M. Wang, B. M. Binder, and G. E. Schaller. 2013. Mechanisms of signal transduction by ethylene: Overlapping and non-overlapping signalling roles in a receptor family. AoB Plants 5 (0):lt010. doi:10.1093/aobpla/plt010.
  • Shi, Y. H., S. W. Zhu, X. Z. Mao, J. X. Feng, Y. M. Qin, L. Zhang, J. Cheng, L. P. Wei, Z. Y. Wang, and Y. X. Zhu. 2006. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. The Plant Cell 18 (3):651–64. doi:10.1105/tpc.105.040303.
  • Simao, F. A., R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov. 2015. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31 (19):3210–12. doi:10.1093/bioinformatics/btv351.
  • Taylor-Teeples, M., L. Lin, M. de Lucas, G. Turco, T. W. Toal, A. Gaudinier, N. F. Young, G. M. Trabucco, M. T. Veling, R. Lamothe, et al. 2015. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517 (7536):571–75. doi:10.1038/nature14099.
  • Topdar, N., A. Kundu, M. K. Sinha, D. Sarkar, M. Das, S. Banerjee, C. S. Kar, P. Satya, H. S. Balyan, B. S. Mahapatra, et al. 2013. A complete genetic linkage map and QTL analyses for bast fibre quality traits, yield and yield components in jute (Corchorus olitorius L.). Cytology & Genetics 47 (3):129–37. doi:10.3103/S0095452713030092.
  • Wang, K. L., H. Li, and J. R. Ecker. 2002. Ethylene biosynthesis and signaling networks. The Plant Cell 14 (Suppl 1):S131–151. doi:10.1105/tpc.001768.
  • Wang, Y. Z., F. Li, Q. Y. He, Z. G. Bao, Z. Zeng, D. An, T. Zhang, L. Yan, H. Wang, S. Zhu, et al. 2021. Genomic analyses provide comprehensive insights into the domestication of bast fiber crop ramie (Boehmeria nivea). The Plant Journal 107 (3):787–800. doi:10.1111/tpj.15346.
  • Wang, L., J. H. Zhou, H. C. Xing, S. S. Bai, and J. Li. 2012. Effect of gibberellin and ethephon on the character yield and quality of different gender ramie. Crop Research 26 (1):20–24.
  • Xie, J. R., J. Q. Li, Y. C. Jie, D. Y. Xie, D. Yang, H. Z. Shi, and Y. L. Zhong. 2020. Comparative transcriptomics of stem bark reveals genes associated with bast fiber development in Boehmeria nivea L. gaud (ramie). BMC Genomics 21 (1):40. doi:10.1186/s12864-020-6457-8.
  • Yang, S. F., and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Review Plant Physiology 35 (1):155–89. doi:10.1146/annurev.pp.35.060184.001103.
  • Zeng, Z., Y. Z. Wang, C. Liu, X. F. Yang, H. Y. Wang, F. Li, and T. M. Liu. 2019. Linkage mapping of quantitative trait loci for fiber yield and its related traits in the population derived from cultivated ramie and wild B. nivea var. tenacissima. Scientific Reports 9 (1):16855. doi:10.1038/s41598-019-53399-5.
  • Zhang, L. W., Y. Xu, X. T. Zhang, X. K. Ma, L. L. Zhang, Z. Y. Liao, Q. Zhang, X. Wan, Y. Cheng, J. Zhang, et al. 2020. The genome of kenaf (Hibiscus cannabinus L.) provides insights into bast fibre and leaf shape biogenesis. Plant Biotechnology Journal 18 (8):1796–809. doi:10.1111/pbi.13341.
  • Zhao, Q., and R. A. Dixon. 2011. Transcriptional networks for lignin biosynthesis: More complex than we thought? Trends in plant science 16 (4):227–33. doi:10.1038/nature14099.