1,009
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Characterization of Ash from Sugar Palm [Arenga Pinnata (Wrumb) Merr.] Fiber for Industrial Application

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, &

References

  • Adeleke, A. A., J. K. Odusote, P. P. Ikubanni, O. A. Lasode, M. Malathi, and D. Paswan. 2020. The ignitability, fuel ratio and ash fusion temperatures of torrefied woody biomass. Heliyon 6 (3):e03582. doi:10.1016/j.heliyon.2020.e03582.
  • Aigbodion, V. S., O. J. Agunsoye, R. O. Edokpia, and I. C. Ezema. 2018. Performance analysis of a connecting rod produced with Al-Cu-Mg/Bean pod ash nanoparticles. Silicon 10 (1):107–13. doi:10.1007/s12633-015-9382-8.
  • Alaneme, K. K., M. O. Bodunrin, and A. A. Awe. 2018. Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites. Journal of King Saud University - Engineering Sciences 30 (1):96–103. doi:10.1016/j.jksues.2016.01.001.
  • Alias, N., N. Ibrahim, M. K. Abd Hamid, H. Hasbullah, R. R. Ali, A. N. Sadikin, and U. A. Asli. 2014. Thermogravimetric analysis of rice husk and coconut pulp for potential biofuel production by flash pyrolysis. Malaysian Journal of Analytical Sciences 18 (3):705–10.
  • Ananthi, A., D. Geetha, and P. S. Ramesh. 2016. Preparation and characterization of silica material from rice husk ash – an economically viable method. Chemistry and Material Research 8 (6):1–7.
  • Anggria, L., Husnain, and T. Masunaga. 2021. A method for production of pure silica as fertilizer from industrial waste material. IOP Conference Series: Earth and Environmental Science 648 (1):012213. doi:10.1088/1755-1315/648/1/012213.
  • Anuar, M. F., Y. Wing Fen, M. Hafiz Mohd Zaid, K. Amin Matori, and R. Emilia Mohamed Khaidir. 2020. The physical and optical studies of crystalline silica derived from the green synthesis of coconut husk ash. Applied Sciences 10 (6):2128. doi:10.3390/app10062128.
  • Armynah, B., Z. D. Atika, W. H. Piarah, and D. Tahir. 2018. Analysis of chemical and physical properties of biochar from rice husk biomass. Journal of Physics Conference Series 979 (1):012038. doi:10.1088/1742-6596/979/1/012038.
  • Athinarayanan, J., V. Subbarayan Periasamy, M. Alhazmi, K. A. Alatiah, and A. A. Alshatwi. 2015. Synthesis of biogenic silica nanoparticles from rice husks for biomedical applications. Ceramics International 41 (1):275–81. doi:10.1016/j.ceramint.2014.08.069.
  • Atiqah, A., S. M. S. Mohammad Jawaid, and M. Ridzwan Ishak. 2018. Effect of surface treatment on the mechanical properties of sugar palm/glass fiber-reinforced thermoplastic polyurethane hybrid composites. BioResources 13 (1):1174–88. doi:10.15376/biores.13.1.1174-1188.
  • Attol, D. H., and H. Hamied Mihsen. 2019. SYnthesis of silica-salen derivative from rice husk ash and its use for extraction of divalent metal ions co(ii), ni(ii) and cu(ii). Indonesian Journal of Chemistry 20 (1):16. doi:10.22146/ijc.38558.
  • Bakar, R. A., R. Yahya, and S. Neon Gan. 2016. Production of high purity amorphous silica from rice husk. Procedia Chemistry 19:189–95. doi:10.1016/j.proche.2016.03.092.
  • Bardalai, M., and K. D. Mahanta. 2016. Characterization of rice husk through x- ray diffraction, scanning electron microscope and Fourier transform infrared analysis. International Journal of Innovative Research in Science and Engineering 2 (5):472–79.
  • Bisht, N., P. Chandra Gope, and N. Rani. 2020. Rice husk as a fibre in composites: A review. Journal of the Mechanical Behavior of Materials 29 (1):147–62. doi:10.1515/jmbm-2020-0015.
  • Channoy, C., S. Maneewan, C. Punlek, and S. Chirarattananon. 2018. Preparation and characterization of silica gel from bagasse ash. Advanced Materials Research 1145:44–48. doi:10.4028/scientific.net/amr.1145.44.
  • Costa, J. A. S., A. C. F. S. Garcia, D. O. Santos, V. H. V. Sarmento, M. E. de Mesquita, and L. P. C. Romão. 2015. APplications of inorganic–organic mesoporous materials constructed by self-assembly processes for removal of benzo[k]fluoranthene and benzo[b]fluoranthene. Journal of Sol-Gel Science and Technology 75 (3):495–507. doi:10.1007/s10971-015-3720-6.
  • Costa, S. J. A., and C. M. Paranhos. 2018. Systematic evaluation of amorphous silica production from rice husk ashes. Journal of Cleaner Production 192:688–97. doi:10.1016/j.jclepro.2018.05.028.
  • Emdadi, Z., N. Asim, M. A. Yarmo, and K. Sopian. 2015. Effect of chemical treatments on rice husk (RH) water absorption property. International Journal of Chemical Engineering and Applications 6 (4):273–76. doi:10.7763/ijcea.2015.v6.495.
  • Febrero, L., E. Granada, C. Pérez, D. Patiño, and E. Arce. 2014. Characterisation and comparison of biomass ashes with different thermal histories using TG-DSC. Journal of Thermal Analysis and Calorimetry 118 (2):669–80. doi:10.1007/s10973-014-3717-3.
  • Gewaily, E. 2019. Impact of compost rice straw and rice straw as organic fertilizer with potassium treatments on yield and some grain quality of Giza 179 rice variety. Journal Plant Production, Mansoura Univ 10 (2):143–51. doi:10.21608/jpp.2019.36244.
  • Ghafar, H., S. N. A. M. Halidi, and M. S. So’aib. 2020. Coconut shell: thermogravimetric analysis and gross calorific value. Proceedings of Mechanical Engineering Research, Kampus Teknologi UteM, Melaka, Malaysia. December: 206–07.
  • Hernández-Martínez, D., A. A. Leyva-Verduzco, M.A.E. Francisco Rodríguez-Félix, and F. J. Wong-Corral. 2020. Obtaining and characterization of silicon(Si) from wheat husk ash for its possible application in solar cells. Journal of Cleaner Production 271 (October):122698. doi:10.1016/j.jclepro.2020.122698.
  • Huseini, M. R., and G. Fitriyano. 2019. The isotherm studies of adsorbent development from pulogadung primary sewage sludge (PS) with rice straw addition by hydrothermal. Journal of Physics Conference Series 1295 (1):012070. doi:10.1088/1742-6596/1295/1/012070.
  • Ikubanni, P. P., M. Oki, A. A. Adeleke, A. A. Adediran, and O. S. Adesina. 2020. Influence of temperature on the chemical compositions and microstructural changes of ash formed from palm kernel shell. Results in Engineering 8 (August):100173. doi:10.1016/j.rineng.2020.100173.
  • Ilyas, R. A., S. M. Sapuan, and M. R. Ishak. 2018. Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (arenga pinnata). Carbohydrate Polymers 181 (June 2017):1038–51. doi:10.1016/j.carbpol.2017.11.045.
  • Ilyas, R. A., S. M. Sapuan, M. R. Ishak, and E. S. Zainudin. 2018. Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydrate Polymers 202 (September):186–202. doi:10.1016/j.carbpol.2018.09.002.
  • Imoisili, P. E., K. O. Ukoba, and T.C. Jen. 2020. Synthesis and characterization of amorphous mesoporous silica from palm kernel shell ash. Boletín de La Sociedad Española de Cerámica y Vidrio 59 (4):159–64. doi:10.1016/j.bsecv.2019.09.006.
  • Ishak, M. R., Z. Leman, S. M. Sapuan, M. Z. A. Rahman, and U. M. K. Anwar. 2013a. Chemical composition and ft-ir spectra of sugar palm (arenga pinnata) fibers obtained from different heights. Journal of Natural Fibers 10 (2):83–97. doi:10.1080/15440478.2012.733517.
  • Ishak, M. R., Z. Leman, S. M. Sapuan, M. Z. A. Rahman, and U. M. K. Anwar. 2013b. Impregnation modification of sugar palm fibres with phenol formaldehyde and unsaturated polyester. Fibers and Polymers 14 (2):250–57. doi:10.1007/s12221-013-0250-0.
  • Jadhav, S., A. Aradhye, S. Kulkarni, Y. Shinde, and V. Vaishampayan. 2019. Effect of hybrid ash reinforcement on microstructure of a356 alloy matrix composite. AIP Conference Proceedings 2105 (May). 10.1063/1.5100695.
  • Kanthasamy, S., T. S. Ravikumar, and T. Tamilanban. 2020. Withdrawn: Mechanical and corrosion behavior of Groundnut Shell ash particle (GSAp) reinforced AZ31 magnesium composite. Materials Today: Proceedings xxxx:1–5. doi:10.1016/j.matpr.2020.11.834.
  • Kumar, S., P. Sangwan, R. Mor, V. Dhankhar, and S. Bidra. 2013. Utilization of rice husk and their ash: A review. Journal of Chemical and Environmental Sciences 1 (5):126–29.
  • Liu, Y., Z. He, and M. Uchimiya. 2015. Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy. Modern Applied Science 9 (4):246–53. doi:10.5539/mas.v9n4p246.
  • Liu, R., B. Pang, X. Zhao, and Y. Yang. 2020. Effect of rice husk ash on early hydration behavior of magnesium phosphate cement. Construction and Building Materials 263:120180. doi:10.1016/j.conbuildmat.2020.120180.
  • Lwin, T., T. T. Win, M. L. Wai, and Y. M. Maung. 2019. Preparation and characterization of activated carbon derived from rice husk biomass. Journal Myanmar Academy of Arts and Science XVII (3):195–207.
  • Ma, X., L. Fenghai, M. Mingjie, and Y. Fang. 2017. Investigation on blended ash fusibility characteristics of biomass and coal with high silica-alumina. Energy & Fuels 31 (8):7941–51. doi:10.1021/acs.energyfuels.7b01070.
  • Manimaran, P., S. P. Saravanan, M. R. Sanjay, S. Siengchin, M. Jawaid, and A. Khan. 2019. Characterization of new cellulosic fiber: dracaena reflexa as a reinforcement for polymer composite structures. Journal of Materials Research and Technology 8 (2):1952–63. doi:10.1016/j.jmrt.2018.12.015.
  • Mukhtar, I., Z. Leman, M. R. Ishak, and E. S. Zainudin. 2018. Thermal and physicochemical properties of sugar palm fibre treated with borax. IOP Conference Series: Materials Science and Engineering 368 (June):012038. doi:10.1088/1757-899X/368/1/012038.
  • Nan, J., R. Shang, S. G. J. Heijman, and L. C. Rietveld. 2018. High-Silica Zeolites for Adsorption of Organic Micro-Pollutants in Water Treatment: A Review. Water Research 144 (November):145–61. doi:10.1016/j.watres.2018.07.017.
  • Narayan, R., U. Nayak, A. Raichur, and S. Garg. 2018. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics 10 (3):118. doi:10.3390/pharmaceutics10030118.
  • Ochuokpa, E. O., D. S. Yawas, P. U. Okorie, and M. Sumaila. 2021. Evaluation of Mechanical and Metallurgical Properties Al- Si-Mg/Mangiferaindica Seed Shell Ash (MSSA) Particulate Composite for Production of Motorcycle Hub. ATBU Journal of Science, Technology and Education 9 (1):221–38.
  • Okoronkwo, E. A., P. E. Imoisili, and S. O. O. Olusunle. 2013. Extraction and characterization of amorphous silica from corn cob ash by sol-gel method related papers. Chemistry and Materials Research 3 (4):6.
  • Oladele, I. O., and A. Moses Okoro. 2016. The effect of palm kernel shell ash on the mechanical properties of as-cast aluminium alloy matrix composites. 5 (28): 15–30. doi:10.7726/ajmst.2016.1002.
  • Pode, R. 2016. Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews 53:1468–85. doi:10.1016/j.rser.2015.09.051.
  • Raju, S. S., and G. S. Rao. 2017. Assessments of Desirability Wear Behaviour on Al-Coconut Shell Ash - Metal Matrix Composite using Grey - Fuzzy Reasoning Grade. Indian Journal of Science and Technology 10 (15):1–11. doi:10.17485/ijst/2017/v10i15/113826.
  • Saba, N., M. Paridah, K. A. Tahir, and N. Azowa Ibrahim. 2015. Preparation and characterization of fire retardant nano-filler from oil palm empty fruit bunch fibers. BioResources 10 (3):4530–43. doi:10.15376/biores.10.3.4530-4543.
  • Salakhum, S., T. Yutthalekha, M. Chareonpanich, J. Limtrakul, and C. Wattanakit. 2018. Synthesis of hierarchical faujasite nanosheets from corn cob ash-derived nanosilica as efficient catalysts for hydrogenation of lignin-derived alkylphenols. Microporous and Mesoporous Materials 258:141–50. doi:10.1016/j.micromeso.2017.09.009.
  • Sanjay, M. R., G. R. Arpitha, L. Laxmana Naik, K. Gopalakrishna, and B. Yogesha. 2016. Applications of natural fibers and its composites: an overview. Natural Resources 07 (03):108–14. doi:10.4236/nr.2016.73011.
  • Sanyang, M. L., S. M. Sapuan, M. Jawaid, M. Ridzwan Ishak, and J. Sahari. 2016. Effect of sugar palm-derived cellulose reinforcement on the mechanical and water barrier properties of sugar palm starch biocomposite films. BioResources 11 (2):4134–45. doi:10.15376/biores.11.2.4134-4145.
  • Sapawe, N. 2018. Production of silica from agricultural waste. Archives of Organic and Inorganic Chemical Sciences 3 (2):342–43. doi:10.32474/AOICS.2018.03.000160.
  • Shamsutdinov, A. S., N. B. Kondrashova, I. V. Valtsifer, Y. H. Edward Bormashenko, E. V. Saenko, A. V. Pyankova, and V. A. Valtsifer. 2021. Manufacturing, properties, and application of nanosized superhydrophobic spherical silicon dioxide particles as a functional additive to fire extinguishing powders. Industrial & Engineering Chemistry Research 60 (32):11905–14. doi:10.1021/acs.iecr.1c01999.
  • Sherwani, S. F. K., S. M. Sapuan, Z. Leman, E. S. Zainudin, and A. Khalina. 2021. Physical, mechanical and morphological properties of sugar palm fiber reinforced polylactic acid composites. Fibers and Polymers 0 (0):1–11. doi:10.1007/s12221-021-0407-1.
  • Song, P., J. Song, and Y. Zhang. 2020. Stretchable conductor based on carbon nanotube/carbon black silicone rubber nanocomposites with highly mechanical, electrical properties and strain sensitivity. Composites Part B: Engineering 191 (March):107979. doi:10.1016/j.compositesb.2020.107979.
  • Surya, I., M. Ginting, and V. Purwandari. 2019. Mechanical properties improvement in silica-filled natural rubber composites using stearyl alcohol. IOP Conference Series: Materials Science and Engineering 509 (1):012054. doi:10.1088/1757-899X/509/1/012054.
  • Surya, I., H. Ismail, and A. R. Azura. 2013. Alkanolamide as an accelerator, filler-dispersant and a plasticizer in silica-filled natural rubber compounds. Polymer Testing 32 (8):1313–21. doi:10.1016/j.polymertesting.2013.07.015.
  • Terzioglu, P., S. Yucel, T. M. Rababah, and D. Ozcimen. 2013. Characterization of wheat hull and wheat hull ash as a potential source of SiO2. BioResources 8 (3):4406–20. doi:10.15376/biores.8.3.4406-4420.
  • Thabet, A. F., H. A. Boraei, O. A. Galal, M. F. M. El-Samahy, K. M. Mousa, Y. Z. Zhang, M. Tuda, E. A. Helmy, J. Wen, and T. Nozaki. 2021. Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Scientific reports 11 (1):14484. doi:10.1038/s41598-021-93518-9.
  • Tishkevich, D. I., I. V. Korolkov, A. L. Kozlovskiy, M. Anisovich, D. A. Vinnik, A. E. Ermekova, A. I. Vorobjova, E. E. Shumskaya, T. I. Zubar, S. V. Trukhanov, et al. 2019. Immobilization of boron-rich compound on fe3o4 nanoparticles: stability and cytotoxicity. Journal of Alloys and Compounds 797 (August):573–81. doi:10.1016/j.jallcom.2019.05.075.
  • Uda, M. N. A., C. B. G. Subash, N. H. H. Uda Hashim, N. A. Parmin, M. N. Afnan Uda, and P. Anbu. 2021. Production and characterization of silica nanoparticles from fly ash: Conversion of agro-waste into resource. Preparative Biochemistry & Biotechnology 51 (1):86–95. doi:10.1080/10826068.2020.1793174.
  • Usama, Z., T. Subhani, and S. Wilayat Husain. 2016. Synthesis and characterization of silica nanoparticles from clay. Journal of Asian Ceramic Societies 4 (1):91–96. doi:10.1016/j.jascer.2015.12.001.
  • Usman, Y., E. T. Dauda, M. Abdulwahab, and R. M. Dodo. 2020. Effect of mechanical properties and wear behavior on locust bean waste ash (lbwa) particle reinforced aluminium alloy (A356 alloy) composites. FUDMA Journal of Science 4 (200):416–21.
  • Valencia-Saavedra, W., R. Mejía De Gutierrez, and M. Gordillo. 2018. Geopolymeric concretes based on fly ash with high unburned content. Construction and Building Materials 165:697–706. doi:10.1016/j.conbuildmat.2018.01.071.
  • Venkatesh, L., T. V. Arjunan, and K. Ravikumar. 2019. Microstructural CHaracteristics and mechanical behaviour of aluminium hybrid composites reinforced with groundnut shell ash and B4C. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (7):1–13. doi:10.1007/s40430-019-1800-1.
  • Vorobjova, A., D. Tishkevich, D. Shimanovich, M. Zdorovets, A. Kozlovskiy, T. Zubar, D. Vinnik, M. Dong, S. Trukhanov, A. Trukhanov, et al. 2020. Electrochemical behaviour of Ti/Al 2 O 3/Ni nanocomposite material in artificial physiological solution: Prospects for biomedical application. Nanamaterials. 10(173):1–20. doi:10.3390/nano10010173.
  • Xu, X., S. Niu, X. Wang, L. Xin, L. Hui, S. Xinghua, and S. Luo. 2019. Fabrication and casting simulation of composite ceramic cores with silica nanopowders. Ceramics International 45 (15):19283–88. doi:10.1016/j.ceramint.2019.06.178.
  • Yao, X., K. Xu, and Y. Liang. 2017. Comparative Analysis of the Physical and Chemical Properties of Different Biomass Ashes Produced from. BioResources 12 (2):3222–35.
  • Zdorovets, M. V., and A. L. Kozlovskiy. 2020. Surface & coatings technology study of the stability of the structural properties of CeO 2 microparticles to helium irradiation. Surface & Coatings Technology 383 (November 2019):125286. doi:10.1016/j.surfcoat.2019.125286.
  • Zhong, B., X. Zeng, W. Chen, Q. Luo, H. Dechao, Z. Jia, and D. Jia. 2019. Nonsolvent-assisted surface modification of silica by silane and antioxidant for rubber reinforcement. Polymer Testing 78 (March):105949. doi:10.1016/j.polymertesting.2019.105949.
  • Ziegler, D., F. Boschetto, E. Marin, P. Palmero, G. Pezzotti, and J. Marc Tulliani. 2021. Rice husk ash as a new humidity sensing material and its aging behavior. Sensors and Actuators B, Chemical 328 (June 2020):129049. doi:10.1016/j.snb.2020.129049.