745
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Improving the Mechanical Performance of Biocomposite Plaster/ Washingtonia filifera: Optimization Comparison Between ANN and RSM Approaches

ORCID Icon, ORCID Icon, , ORCID Icon &

References

  • Adda, B., A. Belaadi, M. Boumaaza, and M. Bourchak. 2021. Experimental investigation and optimization of delamination factors in the drilling of jute fiber–reinforced polymer biocomposites with multiple estimators. International Journal of Advanced Manufacturing Technology 116 (9):2885–18. doi:10.1007/s00170-021-07628-9.
  • Adewale George, A., J. O. Ighalo, and G. Marques. 2021. Utilisation of machine learning algorithms for the prediction of syngas composition from biomass bio-oil steam reforming. International Journal of Sustainable Energy 40 (4):310–25. doi:10.1080/14786451.2020.1803862.
  • Altun, F., Ö. Kişi, and K. Aydin. 2008. Predicting the compressive strength of steel fiber added lightweight concrete using neural network. Computational Materials Science 42 (2):259–65. doi:10.1016/j.commatsci.2007.07.011.
  • Belaadi, A., S. Amroune, Y. Seki, O. Y. Keskin, S. Köktaş, M. Bourchak, A. Dufresne, H. Fouad, and M. Jawaid. 2022. Extraction and characterization of a new lignocellulosic fiber from yucca treculeana l. leaf as potential reinforcement for industrial biocomposites. Journal of Natural Fibers 19 (15):1–16. doi:10.1080/15440478.2022.2054895.
  • Belaadi, A., M. Boumaaza, S. Amroune, and M. Bourchak. 2020. Mechanical characterization and optimization of delamination factor in drilling bidirectional jute fibre-reinforced polymer biocomposites. International Journal of Advanced Manufacturing Technology 111 (7–8):2073–94. doi:10.1007/s00170-020-06217-6.
  • Belakroum, R., A. Gherfi, M. Kadja, C. Maalouf, M. Lachi, N. El Wakil, and T. H. Mai. 2018. Design and properties of a new sustainable construction material based on date palm fibers and lime. Construction and Building Materials 184:330–43. doi:10.1016/j.conbuildmat.2018.06.196.
  • Bella, G., V. F. Di, G. Galtieri, C. Borsellino, and A. Valenza. 2014. Effects of natural fibres reinforcement in lime plasters (kenaf and sisal vs. polypropylene). Construction and Building Materials 58:159–65. doi:10.1016/j.conbuildmat.2014.02.026.
  • Benzannache, N., A. Belaadi, M. Boumaaza, and M. Bourchak. 2021. Improving the mechanical performance of biocomposite plaster/Washingtonian filifira fibres using the RSM method. Journal of Building Engineering 33:33. doi:10.1016/j.jobe.2020.101840.
  • Boumaaza, M., A. Belaadi, and M. Bourchak. 2021. The effect of alkaline treatment on mechanical performance of natural fibers-reinforced plaster: Part II optimization comparison between ANN and RSM statistics. Journal of Natural Fibers 19 (14):1–16. doi:10.1080/15440478.2021.1964129.
  • Boumaaza, M., A. Belaadi, and M. Bourchak. 2022a. THe effect of alkaline treatment on mechanical performance of natural fibers-reinforced plaster: Optimization using RSM. Journal of Natural Fibers 18 (12):2220–40. doi:10.1080/15440478.2020.1724236.
  • Boumaaza, M., A. Belaadi, and M. Bourchak. 2022b. Systematic review on reinforcing mortars with natural fibers: Challenges of environment-friendly option. Journal of Natural Fibers 19 (16):1–25. doi:10.1080/15440478.2022.2060408.
  • Boumaaza, M., A. Belaadi, M. Bourchak, M. Jawaid, and H. Satha. 2022. Comparative study of flexural properties prediction of Washingtonia filifera rachis biochar bio-mortar by ANN and RSM models. Construction and Building Materials 318:125985. doi:10.1016/j.conbuildmat.2021.125985.
  • Cai, M., H. Takagi, A. Norio Nakagaito, K. Kusaka, M. Katoh, and Y. Li. 2015. Influence of alkali concentration on morphology and tensile properties of abaca fibers. Advanced Materials Research 1110:302–05. doi:10.4028/scientific.net/AMR.1110.302.
  • Cai, R., K. Wang, W. Wen, Y. Peng, M. Baniassadi, and S. Ahzi. 2022. Application of machine learning methods on dynamic strength analysis for additive manufactured polypropylene-based composites. Polymer Testing 110:107580. doi:10.1016/j.polymertesting.2022.107580.
  • Cai, R., W. Wen, K. Wang, Y. Peng, S. Ahzi, and F. Chinesta. 2022. Tailoring interfacial properties of 3D-printed continuous natural fiber reinforced polypropylene composites through parameter optimization using machine learning methods. Materials Today Communications 32:103985. doi:10.1016/j.mtcomm.2022.103985.
  • Cai, R., W. Wen, K. Wang, Y. Peng, S. Ahzi, and F. Chinesta. 2022. Tailoring interfacial properties of 3d-printed continuous natural fiber reinforced polypropylene composites through parameter optimization using machine learning methods. Materials Today Communications 32:103985. doi:10.1016/j.mtcomm.2022.103985.
  • Cheng, P., Y. Peng, L. Shixian, Y. Rao, A. Le Duigou, K. Wang, and S. Ahzi. 2023a. 3D printed continuous fiber reinforced composite lightweight structures: A review and outlook. Composites Part B: Engineering 250:110450. doi:10.1016/j.compositesb.2022.110450.
  • Cheng, P., Y. Peng, K. Wang, A. Le Duigou, S. Yao, and C. Chen. 2023b. Quasi-static penetration property of 3D printed woven-like ramie fiber reinforced biocomposites. Composite Structures 303:116313. doi:10.1016/j.compstruct.2022.116313.
  • Cheng, P., K. Wang, X. Chen, J. Wang, Y. Peng, S. Ahzi, and C. Chen. 2021. Interfacial and mechanical properties of continuous ramie fiber reinforced biocomposites fabricated by in-situ impregnated 3D printing. Industrial Crops and Products 170:113760. doi:10.1016/j.indcrop.2021.113760.
  • Dembri, I., A. Belaadi, M. Boumaaza, and M. Bourchak. 2022. Tensile behavior and statistical analysis of Washingtonia filifera fibers as potential reinforcement for industrial polymer biocomposites. Journal of Natural Fibers 19 (16):1–16. doi:10.1080/15440478.2022.2069189.
  • Iucolano, F., D. Caputo, F. Leboffe, and B. Liguori. 2015. Mechanical behavior of plaster reinforced with abaca fibers. Construction and Building Materials 99:184–91. doi:10.1016/j.conbuildmat.2015.09.020.
  • Iucolano, F., B. Liguori, P. Aprea, and D. Caputo. 2018. Evaluation of bio-degummed hemp fibers as reinforcement in gypsum plaster. Composites Part B: Engineering 138:149–56. doi:10.1016/j.compositesb.2017.11.037.
  • Kewalramani, M. A., and R. Gupta. 2006. Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks. Automation in Construction 15 (3):374–79. doi:10.1016/j.autcon.2005.07.003.
  • Lekrine, A., A. Belaadi, A. Makhlouf, S. Amroune, M. Bourchak, H. Satha, and M. Jawaid. 2022. Structural, thermal, mechanical and physical properties of Washingtonia filifera fibres reinforced thermoplastic biocomposites. Materials Today Communications 31:103574. doi:10.1016/j.mtcomm.2022.103574.
  • Macedo, M. N. Q., J. J. M. Galo, L. A. L. de Almeida, and A. C. D. C. Lima. 2015. Demand side management using artificial neural networks in a smart grid environment. Renewable and Sustainable Energy Reviews 41:128–33. doi:10.1016/j.rser.2014.08.035.
  • Makhlouf, A., A. Belaadi, S. Amroune, M. Bourchak, and H. Satha. 2020. Elaboration and characterization of flax fiber reinforced high density polyethylene biocomposite: Effect of the heating rate on thermo-mechanical properties. Journal of Natural Fibers 19 (10):1–14. doi:10.1080/15440478.2020.1848737.
  • Mansour, M. Y., M. Dicleli, J. Y. Lee, and J. Zhang. 2004. Predicting the shear strength of reinforced concrete beams using artificial neural networks. Engineering Structures 26 (6):781–99. doi:10.1016/j.engstruct.2004.01.011.
  • Nambiar, E. K. K., and K. Ramamurthy. 2006. Influence of filler type on the properties of foam concrete. Cement and Concrete Composites 28 (5):475–80. doi:10.1016/j.cemconcomp.2005.12.001.
  • Nazerian, M., M. Kamyabb, M. Shamsianb, M. Dahmardehb, and M. Kooshaa. 2018. Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient optimization of flexural properties of gypsum-bonded fiber boards. CERNE 24 (1):35–47. doi:10.1590/01047760201824012484.
  • Ositadinma, I., N. J. T. Chamberlain, and O. C. Elijah. 2019. Optimum process parameters for activated carbon production from rice husk for phenol adsorption. Current Journal of Applied Science and Technology 36 (6):1–11. doi:10.9734/cjast/2019/v36i630264.
  • Qu, D., X. Cai, and W. Chang. 2018. Evaluating the effects of steel fibers on mechanical properties of ultra-high performance concrete using artificial neural networks. Applied Sciences 8 (7):1120. doi:10.3390/app8071120.
  • Ravikumar, P., G. Rajeshkumar, P. Manimegalai, K. R. Sumesh, M. R. Sanjay, and S. Siengchin. 2022. Delamination and surface roughness analysis of jute/polyester composites using response surface methodology: consequence of sodium bicarbonate treatment. Journal of Industrial Textiles 51 (1_suppl):360S–77S. doi:10.1177/15280837221077040.
  • Saaidia, A., A. Belaadi, and A. Haddad. 2022. Moisture absorption of cork-based biosandwich material extracted from quercussuber l. plant: ann and fick’s modelling. Journal of Natural Fibers 19 (16):1–18. doi:10.1080/15440478.2022.2072996.
  • Sarıdemir, M. 2009. Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic. Advances in Engineering Software 40 (9):920–27. doi:10.1016/j.advengsoft.2008.12.008.
  • Sumesh, K. R., and K. Kanthavel. 2020. Synergy of fiber content, Al2O3 nanopowder, NaOH treatment and compression pressure on free vibration and damping behavior of natural hybrid-based epoxy composites. Polymer Bulletin 77 (3):1581–604. doi:10.1007/s00289-019-02823-x.
  • Sumesh, K. R., and K. Kanthavel. 2022. Grey relational optimization for factors influencing tensile, flexural, and impact properties of hybrid sisal banana fiber epoxy composites. Journal of Industrial Textiles 51 (3\_suppl):4441S–59S. doi:10.1177/1528083720928501.
  • Sumesh, K. R., V. Kavimani, G. Rajeshkumar, S. Indran, and G. Saikrishnan. 2021. EFfect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. Journal of Material Cycles & Waste Management 23 (4):1277–88. doi:10.1007/s10163-021-01196-6.
  • Tabet, Z., A. Belaadi, M. Boumaaza, and M. Bourchak. 2021. Drilling of a bidirectional jute fibre and cork-reinforced polymer biosandwich structure: ANN and RSM approaches for modelling and optimization. International Journal of Advanced Manufacturing Technology 117 (11–12):3819–39. doi:10.21203/rs.3.rs-503708/v1.
  • Troëdec, M. L., P. Dalmay, C. Patapy, C. Peyratout, A. Smith, and T. Chotard. 2011. Mechanical properties of hemp-lime reinforced mortars: influence of the chemical treatment of fibers. Journal of Composite Materials 45 (22):2347–57. doi:10.1177/0021998311401088.
  • Yilmaz, I., and G. Yuksek. 2009. Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. International Journal of Rock Mechanics and Mining Sciences 46 (4):803–10. doi:10.1016/j.ijrmms.2008.09.002.
  • Zuber, M., K. Mahmood Zia, I. Ahmad Bhatti, Z. Ali, M. U. Arshad, and M. J. Saif. 2012. Modification of cellulosic fibers by UV-irradiation. Part II: After treatments effects. International Journal of Biological Macromolecules 51 (5):743–48. doi:10.1016/j.ijbiomac.2012.07.001.