1,494
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Influence of Jute Fiber on Tensile, Electrical, and Permeability Characteristics of Slag Concrete: A Better, Cheaper, and Eco-Friendly Substitute for Conventional Concrete

, , , ORCID Icon, , & show all

References

  • ACI. 2003. 233R-03 Slag cement in concrete and mortar. Farmington Hills, MI, USA: American Concrete Institute.
  • Affan, M., and M. Ali. 2022. Experimental investigation on mechanical properties of jute fiber reinforced concrete under freeze-thaw conditions for pavement applications. Construction and Building Materials 323:126599. doi:10.1016/j.conbuildmat.2022.126599.
  • Afroughsabet, V., L. Biolzi, and T. Ozbakkaloglu. 2016. High-performance fiber-reinforced concrete: A review. JOURNAL OF MATERIALS SCIENCE 51 (14):6517–20. doi:10.1007/s10853-016-9917-4.
  • Afroughsabet, V., L. Biolzi, and T. Ozbakkaloglu. 2017. Influence of double hooked-end steel fibers and slag on mechanical and durability properties of high performance recycled aggregate concrete. Composite Structures 181:273–84. doi:10.1016/j.compstruct.2017.08.086.
  • Ali, B., M. Azab, H. Ahmed, R. Kurda, M. H. El Ouni, and A. B. Elhag. 2022. Investigation of physical, strength, and ductility characteristics of concrete reinforced with banana (Musaceae) stem fiber. Journal of Building Engineering 61:105024. doi:10.1016/j.jobe.2022.105024.
  • Ali, B., M. A. Farooq, M. H. El Ouni, M. Azab, and A. B. Elhag. 2022. The combined effect of coir and superplasticizer on the fresh, mechanical, and long-term durability properties of recycled aggregate concrete. Journal of Building Engineering 59:105009. doi:10.1016/j.jobe.2022.105009.
  • Ali, B., and L. A. Qureshi. 2019. Effect of incorporating glass fibers on properties of fly ash-based recycled aggregate concrete. Taxila, Pakistan: Department of Civil Engineering, University of Engineering and Technology.
  • Ali, B., L. A. Qureshi, and R. Kurda. 2020. Environmental and Economic benefits of steel, glass, and polypropylene fiber reinforced cement composite application in jointed plain concrete pavement. Composites Communications (August) 22 :100437. https://linkinghub.elsevier.com/retrieve/pii/S2452213920301650.
  • Alzard, M. H., H. El-Hassan, and T. El-Maaddawy. 2021. Environmental and economic life cycle assessment of recycled aggregates concrete in the United Arab Emirates. Sustainability 13 (18):10348. doi:10.3390/su131810348.
  • Anon. 1999. NT build 492 – nordtest method, chloride migration coefficient from non-steadystate migration experiments. In NT build book of standards, 1388–98. Finland: Nordtest.
  • Asim, M., G. M. Uddin, H. Jamshaid, A. Raza, Z. Ul Rehman Tahir, U. Hussain, A. N. Satti, N. Hayat, and S. M. Arafat. 2020. Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials. Journal of Building Engineering 31:101411. doi:10.1016/j.jobe.2020.101411.
  • ASTM-C127. 2015. Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, Vol. 04.02, 5. West Conshohocken, PA, USA: ASTM International doi:10.1520/C0127-15.
  • ASTM-C128. 2022. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, 6. West Conshohocken, PA, USA: ASTM International. doi:10.1520/C0128-22.
  • ASTM-C 150. 2018. Standard specification for Portland cement. West Conshohocken, PA, USA: ASTM International. www.astm.org.
  • ASTM-C1557. 2020. Standard test method for tensile strength and young’s modulus of fibers. West Conshohocken, PA, United States: ASTM International.
  • ASTM-C188. 2017. Standard Test Method for Density of Hydraulic CementBook of Standards, 3. West Conshohocken, PA, USA: ASTM International. doi:10.1520/C0188-17.
  • ASTM-C191. 2021. Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, 8. West Conshohocken, PA,USA: ASTM International. doi:10.1520/C0191-21.
  • ASTM-C204. 2016. Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus, 11. West Conshohocken, PA, USA: ASTM International. doi:10.1520/C0204-18E01.
  • ASTM-C39. 2015. Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA, USA: ASTM International.
  • ASTM-C494. 2015. Standard Specification for Chemical Admixtures for Concrete. West Conshohocken, PA, USA: ASTM International.
  • ASTM-C496. 2017. Standard test method for splitting tensile strength of cylindrical concrete specimens. In. West Conshohocken, PA. www.astm.org/.
  • ASTM-C78. 2018. Standard test method for flexural strength of concrete (using simple beam with third-point loading). In ASTM Standards, West Conshohocken, PA, USA: ASTM International. http://www.astm.org/.
  • ASTM-C948. 2016. Standard test method for dry and wet bulk density, water absorption, and apparent porosity of thin sections of glass-fiber reinforced concrete standard specification for chemical admixtures for concrete. West Conshohocken, PA, USA: ASTM International.
  • ASTM-D8171. 2018. Standard test methods for density determination of flax fiber. West Conshohocken, PA, USA: ASTM International.
  • Ballesteros, J. E. M., V. dos Santos, G. Mármol, M. Frías, and J. Fiorelli. 2017. Potential of the hornification treatment on eucalyptus and pine fibers for fiber-cement applications. Cellulose 24 (5):2275–86. doi:10.1007/s10570-017-1253-6.
  • Banthia, N., F. Majdzadeh, J. Wu, and V. Bindiganavile. 2014. Fiber synergy in hybrid fiber reinforced concrete (HyFRC) in flexure and direct shear. Cement and Concrete Composites 48:91–97. doi:10.1016/j.cemconcomp.2013.10.018.
  • Bheel, N., T. Tafsirojjaman, Y. Liu, P. Awoyera, A. Kumar, and M. A. Keerio. 2021. Experimental study on engineering properties of cement concrete reinforced with nylon and jute fibers. Buildings 11 (10):454. doi:10.3390/buildings11100454.
  • C33M-18, A.C./. 2018. Standard specification for concrete aggregates. Annual Book of Standards, West Conshohocken, PA. West Conshohocken, PA, USA: ASTM International.
  • Chan, R., M. A. Santana, A. M. Oda, R. C. Paniguel, L. B. Vieira, A. D. Figueiredo, and I. Galobardes. 2019. Analysis of potential use of fibre reinforced recycled aggregate concrete for sustainable pavements. Journal of Cleaner Production 218:183–91. doi:10.1016/j.jclepro.2019.01.221.
  • Cheng, A., R. Huang, J. -K. Wu, and C. -H. Chen. 2005. Influence of GGBS on durability and corrosion behavior of reinforced concrete. Materials Chemistry and Physics 93 (2):404–11. https://www.sciencedirect.com/science/article/pii/S0254058405002257.
  • Chindaprasirt, P., S. Rukzon, and V. Sirivivatnanon. 2008. Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Construction and Building Materials 22 (5):932–38. doi:10.1016/j.conbuildmat.2006.12.001.
  • Chokshi, S., V. Parmar, P. Gohil, and V. Chaudhary. 2020. Chemical composition and mechanical properties of natural fibers. Journal of Natural Fibers 19 (10):1–12. doi:10.1080/15440478.2020.1848738.
  • Das, C. S., T. Dey, R. Dandapat, B. B. Mukharjee, and J. Kumar. 2018. Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete. Construction and Building Materials 189:649–59. doi:10.1016/j.conbuildmat.2018.09.036.
  • Dávila-Pompermayer, R., L. G. Lopez-Yepez, P. Valdez-Tamez, C. A. Juárez, and A. Durán-Herrera. 2020. Lechugilla natural fiber as internal curing agent in self compacting concrete (scc): Mechanical properties, shrinkage and durability. Cement and Concrete Composites 112:103686. doi:10.1016/j.cemconcomp.2020.103686.
  • Dayananda, N., B. S. K. Gowda, and G. L. E. Prasad. 2018. A study on compressive strength attributes of jute fiber reinforced cement concrete composites. In IOP Conference Series: Materials Science and Engineering, 376:12069. London, United Kingdom: IOP Publishing.
  • de Almeida Melo Filho, J., F. de Andrade Silva, and R. D. Toledo Filho. 2013. Degradation kinetics and aging mechanisms on sisal fiber cement composite systems. Cement and Concrete Composites 40:30–39. doi:10.1016/j.cemconcomp.2013.04.003.
  • de Lima, T. E. S., A. R. G. de Azevedo, M. T. Marvila, V. S. Candido, R. Fediuk, and S. N. Monteiro. 2022. Potential of using amazon natural fibers to reinforce cementitious composites: A review. Polymers 14 (3):647. doi:10.3390/polym14030647.
  • El Ouni, M. H., A. Raza, K. M. Elhadi, M. Azab, and M. Arshad. 2022. Parametric investigation of GFRP-RCC jute fibre-reinforced recycled aggregate concrete elements. In Structures, Vol. 45 1043–61. Elsevier.
  • Frazão, C., J. Barros, J. A. Bogas, V. García-Cortés, and T. Valente. 2022. Technical and environmental potentialities of recycled steel fiber reinforced concrete for structural applications. Journal of Building Engineering 45:103579. doi:10.1016/j.jobe.2021.103579.
  • Gao, D., L. Zhang, J. Zhao, and P. You. 2020. Durability of steel fibre-reinforced recycled coarse aggregate concrete. Construction and Building Materials 232:117119. doi:10.1016/j.conbuildmat.2019.117119.
  • Han, F., Z. Zhang, D. Wang, and P. Yan. 2015. Hydration heat evolution and kinetics of blended cement containing steel slag at different temperatures. Thermochimica Acta 605:43–51. doi:10.1016/j.tca.2015.02.018.
  • Hashmi, A. F., M. Shariq, and A. Baqi. 2021. An investigation into age-dependent strength, elastic modulus and deflection of low calcium fly ash concrete for sustainable construction. Construction and Building Materials 283:122772. doi:10.1016/j.conbuildmat.2021.122772.
  • He, F., C. Shi, Q. Yuan, C. Chen, and K. Zheng. 2012. AgNO3-based colorimetric methods for measurement of chloride penetration in concrete. Construction and Building Materials 26 (1):1–8. https://www.sciencedirect.com/science/article/pii/S0950061811002546.
  • Hussain, I., B. Ali, M. U. Rashid, M. T. Amir, S. Riaz, and A. Ali. 2021. Engineering properties of factory manufactured paving blocks utilizing steel slag as cement replacement. Case Studies in Construction Materials 15:e00755. doi:10.1016/j.cscm.2021.e00755.
  • Huynh, P. T., Y. Ogawa, K. Kawai, and P. T. Bui. 2021. Evaluation of the cementing efficiency factor of low-calcium fly ash for the chloride-penetration resistance of concretes: A simple approach. Construction and Building Materials 270:121858. doi:10.1016/j.conbuildmat.2020.121858.
  • Islam, M. S., and S. J. U. Ahmed. 2018. Influence of jute fiber on concrete properties. Construction and Building Materials 189:768–76. doi:10.1016/j.conbuildmat.2018.09.048.
  • Jamshaid, H., R. K. Mishra, A. Raza, U. Hussain, M. L. Rahman, S. Nazari, V. Chandan, M. Muller, and R. Choteborsky. 2022. Natural cellulosic fiber reinforced concrete: Influence of fiber type and loading percentage on mechanical and water absorption performance. Materials 15 (3):874. doi:10.3390/ma15030874.
  • Kazmi, S. M. S., M. J. Munir, Y. -F. Wu, and I. Patnaikuni. 2018. Effect of macro-synthetic fibers on the fracture energy and mechanical behavior of recycled aggregate concrete. Construction and Building Materials 189:857–68. doi:10.1016/j.conbuildmat.2018.08.161.
  • Kazmi, S. M. S., M. J. Munir, Y. -F. Wu, I. Patnaikuni, Y. Zhou, and F. Xing. 2019. Axial stress-strain behavior of macro-synthetic fiber reinforced recycled aggregate concrete. Cement and Concrete Composites 97:341–56. doi:10.1016/j.cemconcomp.2019.01.005.
  • Khan, M., and M. Ali. 2018. Effect of super plasticizer on the properties of medium strength concrete prepared with coconut fiber. Construction and Building Materials 182:703–15. doi:10.1016/j.conbuildmat.2018.06.150.
  • Kim, J., C. Park, Y. Choi, H. Lee, and G. Song. 2012. An investigation of mechanical properties of jute fiber-reinforced concrete. In High performance fiber reinforced cement composites, Vol. 6 75–82. Springer.
  • Kou, S., C. Poon, and F. Agrela. 2011. Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cement and Concrete Composites 33 (8):788–95. doi:10.1016/j.cemconcomp.2011.05.009.
  • Kurda, R., J. de Brito, and J. Silvestre. 2018. Combined economic and mechanical performance optimization of recycled aggregate concrete with high volume of fly ash. Applied Sciences 8 (7):1189. doi:10.3390/app8071189.
  • Kurda, R., J. D. Silvestre, and J. de Brito. 2018. Life cycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash. Resources Conservation and Recycling 139:407–17. doi:10.1016/j.resconrec.2018.07.004.
  • Lai, M. H., J. Zou, B. Yao, J. C. M. Ho, X. Zhuang, and Q. Wang. 2021. Improving mechanical behavior and microstructure of concrete by using bof steel slag aggregate. Construction and Building Materials 277:122269. doi:10.1016/j.conbuildmat.2021.122269.
  • Layssi, H., P. Ghods, A. R. Alizadeh, and M. Salehi. 2015. Electrical resistivity of concrete. Concrete International 37 (5):41–46.
  • Lehne, J., and F. Preston. 2018. Making concrete change: Innovation in low-carbon cement and concrete.
  • Lumley, J. S., R. S. Gollop, G. K. Moir, and H. F. W. Taylor. 1996. Degrees of reaction of the slag in some blends with Portland cements. Cement and Concrete Research 26 (1):139–51. doi:10.1016/0008-8846(95)00190-5.
  • Martins, A. C. P., J. M. F. de Carvalho, L. C. B. Costa, H. D. Andrade, T. V. de Melo, J. C. L. Ribeiro, L. G. Pedroti, and R. A. F. Peixoto. 2021. Steel slags in cement-based composites: an ultimate review on characterization, applications and performance. Construction and Building Materials 291:123265. doi:10.1016/j.conbuildmat.2021.123265.
  • Oh, D. -Y., T. Noguchi, R. Kitagaki, and W. -J. Park. 2014. CO2 emission reduction by reuse of building material waste in the Japanese cement industry. Renewable and Sustainable Energy Reviews 38:796–810. doi:10.1016/j.rser.2014.07.036.
  • Panesar, D. K., and J. Francis. 2014. Influence of limestone and slag on the pore structure of cement paste based on mercury intrusion porosimetry and water vapour sorption measurements. Construction and Building Materials 52:52–58. doi:10.1016/j.conbuildmat.2013.11.022.
  • Papachristoforou, M., E. K. Anastasiou, and I. Papayianni. 2020. Durability of steel fiber reinforced concrete with coarse steel slag aggregates including performance at elevated temperatures. Construction and Building Materials 262:120569. doi:10.1016/j.conbuildmat.2020.120569.
  • Qureshi, L. A., B. Ali, and A. Ali. 2020. Combined effects of supplementary cementitious materials (silica fume, GGBS, fly ash and rice husk ash) and steel fiber on the hardened properties of recycled aggregate concrete. Construction and Building Materials 263 (December):120636. https://linkinghub.elsevier.com/retrieve/pii/S0950061820326416.
  • Ramli, M., W. H. Kwan, and N. F. Abas. 2013. Strength and durability of coconut-fiber-reinforced concrete in aggressive environments. Construction and Building Materials 38:554–66. doi:10.1016/j.conbuildmat.2012.09.002.
  • Raza, S. S., and L. A. Qureshi. 2021. Effect of carbon fiber on mechanical properties of reactive powder concrete exposed to elevated temperatures. Journal of Building Engineering 42:102503. doi:10.1016/j.jobe.2021.102503.
  • Señas, L., C. Priano, and S. Marfil. 2016. Influence of recycled aggregates on properties of self-consolidating concretes. Construction and Building Materials 113:498–505. doi:10.1016/j.conbuildmat.2016.03.079.
  • Sharma, R. L., and S. P. Pandey. 1999. Influence of mineral additives on the hydration characteristics of ordinary Portland cement. Cement and Concrete Research 29 (9):1525–29. doi:10.1016/S0008-8846(99)00104-0.
  • Siti Syazwani, N., M. N. Ervina Efzan, C. K. Kok, and M. J. Nurhidayatullaili. 2022. Analysis on extracted jute cellulose nanofibers by Fourier transform infrared and X-ray diffraction. Journal of Building Engineering 48:103744. doi:10.1016/j.jobe.2021.103744.
  • Song, H., J. Liu, K. He, and W. Ahmad. 2021. A comprehensive overview of jute fiber reinforced cementitious composites. Case Studies in Construction Materials 15:e00724. doi:10.1016/j.cscm.2021.e00724.
  • Sridhar, J., R. Gobinath, and M. S. Kırgız. 2022. Comparative study for efficacy of chemically treated jute fiber and bamboo fiber on the properties of reinforced concrete beams. Journal of Natural Fibers 19 (15):12224–34. November 23. doi:10.1080/15440478.2022.2054894.
  • Tian, H., and Y. X. Zhang. 2016. The influence of bagasse fibre and fly ash on the long-term properties of green cementitious composites. Construction and Building Materials 111:237–50. doi:10.1016/j.conbuildmat.2016.02.103.
  • Williams, G. I., and R. P. Wool. 2000. Composites from natural fibers and soy oil resins. Applied Composite Materials 7 (5):421–32. doi:10.1023/A:1026583404899.
  • Wu, Z., C. Shi, W. He, and D. Wang. 2017. Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements. Cement and Concrete Composites 79:148–57. doi:10.1016/j.cemconcomp.2017.02.010.
  • Xie, J., Z. Zhang, Z. Lu, and M. Sun. 2018. Coupling effects of silica fume and steel-fiber on the compressive behaviour of recycled aggregate concrete after exposure to elevated temperature. Construction and Building Materials 184:752–64. doi:10.1016/j.conbuildmat.2018.07.035.
  • Yan, L., S. Su, and N. Chouw. 2015. Microstructure, flexural properties and durability of coir fibre reinforced concrete beams externally strengthened with flax FRP Composites. Composites Part B: Engineering 80:343–54. doi:10.1016/j.compositesb.2015.06.011.
  • Zakaria, M., M. Ahmed, M. M. Hoque, and S. Islam. 2016. Scope of using jute fiber for the reinforcement of concrete material. Textiles and Clothing Sustainability 2 (1):11. doi:10.1186/s40689-016-0022-5.
  • Zakaria, M., M. Ahmed, M. Hoque, and A. Shaid. 2018. A comparative study of the mechanical properties of jute fiber and yarn reinforced concrete composites. Journal of Natural Fibers 17 (5):676–87. doi:10.1080/15440478.2018.1525465.
  • Zhou, X., H. Saini, and G. Kastiukas. 2017. Engineering properties of treated natural hemp fiber-reinforced concrete. Frontiers in Built Environment 3:33. doi:10.3389/fbuil.2017.00033.