871
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Effect of Wastes of Nettle Fiber on Mechanical and Thermal Properties of Polypropylene Composite

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, & ORCID Icon show all

References

  • Ab Ghani, M. H., and S. Ahmad. 2011. The comparison of water absorption analysis between counterrotating and corotating twin-screw extruders with different antioxidants content in wood plastic composites. Advances in Materials Science and Engineering 1–13. doi:10.1155/2011/406284.
  • Alkbir, M. F. M., S. M. Sapuan, A. A. Nuraini, and M. R. Ishak. 2016. Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Composite Structures 148:59–73. doi:10.1016/j.compstruct.2016.01.098.
  • Altay, L., M. Atagur, O. Akyuz, Y. Seki, I. Sen, M. Sarikanat, and K. Sever. 2018. Manufacturing of recycled carbon fiber reinforced polypropylene composites by high speed thermo‐kinetic mixing for lightweight applications. Polymer Composites 39 (10):3656–65. doi:10.1002/pc.24394.
  • Arthanarieswaran, V. P., A. Kumaravel, and S. S. Saravanakumar. 2015. Characterization of new natural cellulosic fiber from Acacia leucophloea bark. International Journal of Polymer Analysis and Characterization 20 (4):367–76. doi:10.1080/1023666X.2015.1018737.
  • Atagür, M., M. Sarikanat, T. Uysalman, O. Polat, İ. Y. Elbeyli, Y. Seki, and K. Sever. 2018. Mechanical, thermal, and viscoelastic investigations on expanded perlite–filled high-density polyethylene composite. Journal of Elastomers & Plastics 50 (8):747–61. doi:10.1177/0095244318765045.
  • Atagur, M., Y. Seki, O. Oncu, K. Sever, Y. Seki, M. Sarikanat, and L. Altay. 2020. Evaluating of reinforcing effect of ceratonia siliqua for polypropylene: Tensile, flexural and other properties. Polymer Testing 89:106607. doi:10.1016/j.polymertesting.2020.106607.
  • Atagur, M., Y. Seki, Y. Pasaoglu, K. Sever, Y. Seki, M. Sarikanat, and L. Altay. 2020. Mechanical and thermal properties of Carpinus betulus fiber filled polypropylene composites. Polymer Composites 41 (5):1925–35. doi:10.1002/pc.25508.
  • Balla, V. K., K. H. Kate, J. Satyavolu, P. Singh, and J. G. D. Tadimeti. 2019. Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects. Composites Part B: Engineering 174:106956. doi:10.1016/j.compositesb.2019.106956.
  • Baskaran, P. G., M. Kathiresan, P. Senthamaraikannan, and S. S. Saravanakumar. 2018. Characterization of new natural cellulosic fiber from the bark of dichrostachys cinerea. Journal of Natural Fibers 15 (1):62–68. doi:10.1080/15440478.2017.1304314.
  • Beck, H. N., and H. D. Ledbetter. 1965. DTA study of heterogeneous nucleation of crystallization in polypropylene. Journal of Applied Polymer Science 9 (6):2131–42. doi:10.1002/app.1965.070090610.
  • Bogard, F., T. Bach, B. Abbes, C. Bliard, C. Maalouf, V. Bogard, F. Beaumount, and G. Polidori. 2022. A comparative review of nettle and ramie fiber and their use in biocomposites, particularly with a PLA matrix. Journal of Natural Fibers 19:8205–29. doi:10.1080/15440478.2021.1961341.
  • Chaiarrekij, S., A. Apirakchaiskul, K. Suvarnakich, and S. Kiatkamjornwong. 2012. Kapok I: Characteristcs of kapok fiber as a potential pulp source for papermaking. BioResources 7 (1):0475–88.
  • Das, O., K. Babu, V. Shanmugam, K. Sykam, M. Tebyetekerwa, R. E. Neisiany, and S. Ramakrishna. 2022. Natural and industrial wastes for sustainable and renewable polymer composites. Renewable and Sustainable Energy Reviews 158:112054. doi:10.1016/j.rser.2021.112054.
  • De Rosa, I. M., C. Santulli, and F. Sarasini. 2009. Acoustic emission for monitoring the mechanical behaviour of natural fibre composites: A literature review. Composites Part A, Applied Science and Manufacturing 40 (9):1456–69. doi:10.1016/j.compositesa.2009.04.030.
  • Esmeraldo, M. A., A. C. Gomes, J. E. Freitas, P. B. Fechine, A. S. Sombra, E. Corradini, and S. E. Mazzetto. 2010. Dwarf-green coconut fibers: A versatile natural renewable raw bioresource. Treatment, morphology, and physicochemical properties. Bioresources 5 (4):2478–501.
  • Fischer, H., E. Werwein, and N. Graupner. 2012. Nettle fibre (urtica dioica L.) reinforced poly(lactic acid): A first approach. Journal of Composite Materials 46 (24):3077–87. doi:10.1177/0021998311435676.
  • Fu, S. Y., X. Q. Feng, B. Lauke, and Y. W. Mai. 2008. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Composites Part B: Engineering 39 (6):933–61. doi:10.1016/j.compositesb.2008.01.002.
  • Ganapathy, T., R. Sathiskumar, P. Senthamaraikannan, S. S. Saravanakumar, and A. Khan. 2019. Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree. International Journal of Biological Macromolecules 138:573–81. doi:10.1016/j.ijbiomac.2019.07.136.
  • Ilangovan, M., V. Guna, C. Hu, G. S. Nagananda, and N. Reddy. 2018. Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Industrial Crops and Products 112:556–60. doi:10.1016/j.indcrop.2017.12.042.
  • Jamil, M. S., I. Ahmad, and I. Abdullah. 2006. Effects of rice husk filler on the mechanical and thermal properties of liquid natural rubber compatibilized high-density polyethylene/natural rubber blends. Journal of Polymer Research 13 (4):315–21. doi:10.1007/s10965-005-9040-8.
  • Kaya, N., M. Atagur, O. Akyuz, Y. Seki, M. Sarikanat, M. Sutcu, and K. Sever. 2018. Fabrication and characterization of olive pomace filled PP composites. Composites Part B: Engineering 150:277–83. doi:10.1016/j.compositesb.2017.08.017.
  • Kılınç, A. Ç., S. Köktaş, M. Atagür, and M. Ö. Seydibeyoglu. 2018. Effect of extraction methods on the properties of althea officinalis L. fibers. Journal of Natural Fibers 15 (3):325–36. doi:10.1080/15440478.2017.1325813.
  • Kim, N. K., S. Dutta, and D. Bhattacharyya. 2018. A review of flammability of natural fibre reinforced polymeric composites. Composites Science and Technology 162:64–78. doi:10.1016/j.compscitech.2018.04.016.
  • Kumar, N., and D. Das. 2017. Fibrous biocomposites from nettle (Girardinia diversifolia) and poly(lactic acid) fibers for automotive dashboard panel application. Composites Part B: Engineering 130:54–63. doi:10.1016/j.compositesb.2017.07.059.
  • Lee, B. H., H. J. Kim, and W. R. Yu. 2009. Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties. Fibers and Polymers 10 (1):83–90. doi:10.1007/s12221-009-0083-z.
  • Li, Q., Y. Li, H. Ma, S. Cai, and X. Huang. 2020. Effect of processing temperature on the static and dynamic mechanical properties and failure mechanisms of flax fiber reinforced composites. Composites Communications 20:100343. doi:10.1016/j.coco.2020.04.009.
  • Mahesh, A., B. M. Rudresh, and H. N. Reddappa. 2022. Potential of natural fibers in the modification of mechanical behavior of polypropylene hybrid composites. Materials Today: Proceedings, Bengaluru, India, 54: 131–36.
  • Maheshwaran, M. V., N. R. J. Hyness, P. Senthamaraikannan, S. S. Saravanakumar, and M. R. Sanjay. 2018. Characterization of natural cellulosic fiber from epipremnum aureum stem. Journal of Natural Fibers 15 (6):789–98. doi:10.1080/15440478.2017.1364205.
  • Manimaran, P., M. R. Sanjay, P. Senthamaraikannan, M. Jawaid, S. S. Saravanakumar, and R. George. 2018. Synthesis and characterization of cellulosic fiber from red banana peduncle as reinforcement for potential applications. Journal of Natural Fibers 768–80. doi:10.1080/15440478.2018.1434851.
  • Mofokeng, J. P., A. S. Luyt, T. Tábi, and J. Kovács. 2012. Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials 25 (8):927–48.
  • Omrani, E., P. L. Menezes, and P. K. Rohatgi. 2016. State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal 19 (2):717–36. doi:10.1016/j.jestch.2015.10.007.
  • Premalal, H. G., H. Ismail, and A. Baharin. 2002. Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polymer testing 21 (7):833–39. doi:10.1016/S0142-9418(02)00018-1.
  • Ramesh, M., K. Palanikumar, and K. H. Reddy. 2017. Plant fibre based bio-composites: Sustainable and renewable green materials. Renewable and Sustainable Energy Reviews 79:558–84. doi:10.1016/j.rser.2017.05.094.
  • Salemane, M. G., and A. S. Luyt. 2006. Thermal and mechanical properties of polypropylene-wood powder composites. J Appl Polym 100:4173–80.
  • Sanjay, M. R., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172:566–81. doi:10.1016/j.jclepro.2017.10.101.
  • Sanjay, M. R., S. Siengchin, J. Parameswaranpillai, M. Jawaid, C. I. Pruncu, and A. Khan. 2019. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate Polymers 207:108–21. doi:10.1016/j.carbpol.2018.11.083.
  • Seki, Y., A. Ç. Kılınç, R. Dalmis, M. Atagür, S. Köktaş, A. A. Göktaş, and A. B. Önay. 2018. Surface modification of new cellulose fiber extracted from conium maculatum plant: A comparative study. Cellulose 25 (6):3267–80. doi:10.1007/s10570-018-1797-0.
  • Sinha, R. K., K. Sridhar, R. Purohit, and R. K. Malviya. 2020. Effect of nano SiO2 on properties of natural fiber reinforced epoxy hybrid composite: A review. Materials Today: Proceedings, U.P., India, 26: 3183–86.
  • Sivakandhan, C., G. Murali, N. Tamiloli, and L. Ravikumar. 2020. Studies on mechanical properties of sisal and jute fiber hybrid sandwich composite. Materials Today: Proceedings, Tiruchirappalli, India, 21: 404–07.
  • Tarique, J., S. M. Sapuan, A. Khalina, S. F. K. Sherwani, J. Yusuf, and R. A. Ilyas. 2021. Recent developments in sustainable arrowroot (maranta arundinacea linn) starch biopolymers, fibres, biopolymer composites and their potential industrial applications: A review. Journal of Materials Research and Technology 13:1191–219. doi:10.1016/j.jmrt.2021.05.047.