795
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Evaluating the Properties of Native and Modified Milkweed Floss for Applications as a Reinforcing Fiber

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Agrawal, R., N. S. Saxena, M. S. Sreekala, and S. Thomas. 2000. Effect of treatment on the thermal conductivity and thermal diffusivity of oil-palm-fiber-reinforced phenol formaldehyde composites. Journal of Polymer Science Part B, Polymer Physics 38 (7):916–14. doi:10.1002/SICI1099-04882000040138:7<916:AID-POLB2>3.0.CO;2-0.
  • Allard, J. -F., and N. Atalla. 2009. Propagation of sound in porous media: Modelling sound absorbing materials. 2nd ed. John Wiley and Sons:Chichester.
  • Arif, Z. U., M. Y. Khalid, M. F. Sheikh, A. Zolfagharian, and M. Bodaghi. 2022. Biopolymeric sustainable materials and their emerging applications. Journal of Environmental Chemical Engineering 10 (4). doi:10.1016/j.jece.2022.108159.
  • Arumugaprabu, V., R. D. J. Johnson, M. Uthayakumar, and P. Sivaranjana. 2022. Polymer-based composites; design, manufacturing, and applications. 1st ed. CRC Press:Boca Raton.
  • Ashori, A., and Z. Bahreini. 2009. Evaluation of calotropis gigantea as a promising raw material for fiber-reinforced composite. Journal of Composite Materials 43 (11):1297–304. doi:10.1177/0021998308104526.
  • Astrom, B. T. 2018. Manufacturing of polymer composites. 2nd ed. Routledge:Boca Raton.
  • Bakhtiari, M., H. Hasani, M. Zarrebini, and S. Hassanzadeh. 2015. Investigation of the thermal comfort properties of knitted fabric produced from estabragh (milkweed)-cotton blended yarns. The Journal of the Textile Institute 106 (1):47–56. doi:10.1080/00405000.2014.902167.
  • Ban, E., V. H. Barocas, M. S. Shephard, and C. R. Picu. 2016. Effect of fiber crimp on the elasticity of random fiber networks with and without embedding matrices. Journal of Applied Mechanics 83 (4):410081–87. doi:10.1115/1.4032465.
  • Biagiotti, J., D. Puglia, and J. M. Kenny. 2004. A review on natural fibre-based composites. Part I: Structure, processing, and properties of vegetable fibres. Journal of Natural Fibers 1 (2):37–68. doi:10.1300/J395v01n02_04.
  • Campeau, S., R. Panneton, and S. Elkoun. 2019. Experimental validation of an acoustical micro-macro model for random hollow fibre structures. Acta Acustica United with Acustica 105 (1):240–47. doi:10.3813/AAA.919305.
  • Cao, L., Q. Fu, Y. Si, B. Ding, and J. Yu. 2018. Porous materials for sound absorption. Composites Communications 10:25–35. doi:10.1016/j.coco.2018.05.001.
  • Çengel, Y. A., and A. J. Ghajar. 2015. Heat and mass transfer. Fundamentals and applications. 5th ed. McGraw-Hill:New York.
  • Chung, D. 2010. Composite materials science and applications. 2nd ed. Springer:New Yor.
  • Crews, P. C., S. A. Sievert, L. T. Woeppel, and E. A. McCullough. 1991. Evaluation of milkweed floss as an insulative fill material. Textile Research Journal 61 (4):203–10. doi:10.1177/004051759106100403.
  • Crocker, M. J. 2008. Handbook of noise and vibration control handbook of noise and vibration control. 1st ed. John Willey & Sons:New Jersey.
  • Dahl, M. D., E. J. Rice, and D. E. Groesbeck. 1990. Effects of fiber motion on the acoustical behaviour of an anisotropic, flexible fibrous material. The Journal of the Acoustical Society of America 87 (1):54–66. doi:10.1121/1.398968.
  • Dong, B. X., C. Nowak, J. W. Onorato, T. Ma, J. Niklas, O. G. Poluektov, G. Grocke, M. F. DiTusa, F. A. Escobedo, C. K. Luscombe, et al. 2021. Complex relationship between side-chain polarity, conductivity, and thermal stability in molecularly doped conjugated polymers. Chemistry of Materials. 33(2):741–53. doi:10.1021/acs.chemmater.0c04153.
  • Dorigato, A. 2021. Recycling of polymer blends. Advanced Industrial and Engineering Polymer Research 4 (2):53–69. doi:10.1016/j.aiepr.2021.02.005.
  • Gu, P., R. K. Hessley, and W. -P. Pan. 1992. Thermal characterization analysis of milkweed floss. Journal of Analytical and Applied Pyrolysis 24 (2):147–61. doi:10.1016/0165-2370(92)85026-H.
  • Hassanzadeh, S., and H. Hasani. 2017. A review on milkweed fiber properties as a high-potential raw material in textile applications. Journal of Industrial Textiles 46:1412–36. doi:10.1177/1528083715620398.
  • Ismail, S. O., E. Akpan, and H. N. Dhakal. 2022. Review on natural plant fibres and their hybrid composites for structural applications: Recent trends and future perspectives. Composites Part C 9:100322. doi:10.1016/j.jcomc.2022.100322.
  • Jagadeesh, P., M. Puttegowda, S. M. Rangappa, and S. Siengchin. 2021. A review on extraction, chemical treatment, characterization of natural fibers and its composites for potential applications. Polymer Composites 42 (12):6239–64. doi:10.1002/pc.26312.
  • Karthik, T., and R. Murugan. 2013. Characterization and analysis of ligno-cellulosic seed fiber from pergularia daemia plant for textile applications. Fiber and Polymers 14 (3):465–72. doi:10.1007/s12221-013-0465-0.
  • Karthik, T., and R. Murugan. 2016a. Milkweed - a potential sustainable natural fibre crop. In Environmental footprints and eco-design of products and processes, ed. S. S. Muthu, 111–46. 1st ed. Berlin: Springer-Verlag.
  • Karthik, T., and R. Murugan. 2016b. Spinnability of cotton/milkweed blends on ring, compact and rotor spinning systmes. Indian Journal of Fiber and Textile Research 41:26–32.
  • Khalid, M. Y., A. Al Rashid, Z. U. Arif, W. Ahmed, H. Arshad, and A. A. Zaidi. 2021. Natural fiber reinforced composites: Sustainable materials for emerging applications. Results in Engineering 11. doi:10.1016/j.rineng.2021.100263.
  • Khalid, M. Y., A. Al Rashid, Z. U. Arif, M. F. Sheikh, H. Arshad, and M. Ali Nasir. 2021. Tensile strength evaluation of glass/jute fibers reinforced composites: An experimental and numerical approach. Results in Engineering 10. doi:10.1016/j.rineng.2021.100232.
  • Khalid, M. Y., Z. U. Arif, W. Ahmed, and H. Arshad. 2022. Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials. Sustainable Materials and Technologies 31. doi:10.1016/j.susmat.2021.e00382.
  • Khalid, M. Y., R. Imran, Z. U. Arif, N. Akram, H. Arshad, A. Al Rashid, and F. P. G. Márquez. 2021. Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. Coatings 11 (3):293–311. doi:10.3390/coatings11030293.
  • Khalil, H. P. S. A., A. H. Bhat, and A. F. I. Yusra. 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 87 (2):963–79. doi:10.1016/j.carbpol.2011.08.078.
  • Kim, S. S., and F. A. Agblevor. 2014. Thermogravimetric analysis and fast pyrolysis of milkweed. Bioresource Technology 169:367–73. doi:10.1016/j.biortech.2014.06.079.
  • Mark, J. E. 2007. Physical Properties of Polymers Handbook. 2nd ed. Springer US:New York.
  • Mayandi, K., N. Rajini, P. Pitchipoo, J. T. W. Jappes, and A. V. Rajulu. 2016. Extraction and characterization of new natural lignocellulosic fiber Cyperus pangorei. International Journal of Polymer Analysis and Characterization 21 (2):175–83. doi:10.1080/1023666X.2016.1132064.
  • Meiwu, S., X. Hong, and Y. Weidong. 2010. The fine structure of the kapok fiber. Textile Research Journal 80 (2):159–65. doi:10.1177/0040517508095594.
  • Moon, R. J., A. Martini, J. Nairn, J. Simonsen, and J. Youngblood. 2011. Cellulose nanomaterials review: Structure, properties, and nanocomposites. Chemical Society Reviews 40 (7):3941–94. doi:10.1039/c0cs00108b.
  • Nourbakhsh, A., A. Ashori, and M. Kouhpayehzadeh. 2009. Giant milkweed (calotropis persica) fibers - a potential reinforcement agent for thermoplastics composites. Journal of Reinforced Plastics and Composites 28 (17):2143–49. doi:10.1177/0731684408091902.
  • Ovlaque, P. 2019. Valorization de la fibre d’asclépiade pour le renforcement de matrices organiques. PhD dissertation, Université de Sherbrooke.
  • Ovlaque, P., M. Foruzanmehr, S. Elkoun, and M. Robert. 2020. Milkweed floss fiber/PLA composites: Effect of alkaline and epoxy-silanol surface treatment on their mechanical properties. Composite Interfaces 6 (5):495–513. doi:10.1080/09276440.2019.1655316.
  • Pickering, K. L., M. G. A. Efendy, and T. M. Le. 2016. “A review of recent developments in natural fibre composites and their mechanical performance. Composites, Part A, Applied Science and Manufacturing 83:98–112. doi:10.1016/j.compositesa.2015.08.038.
  • Reddy, K. O., G. S. Reddy, C. U. Maheswari, A. V. Rajulu, and K. M. Rao. 2010. Structural characterization of coconut tree leaf sheath fiber reinforcement. Journal of Forestry Research 21:53–58. doi:10.1007/s11676-010-0008-0.
  • Richard, C., P. Cousin, M. Foruzanmehr, S. Elkoun, and M. Robert. 2019. Characterization of components of milkweed floss fiber. Separation Science and Technology 54 (18):3091–99. doi:10.1080/01496395.2018.1556691.
  • Sanjay, M. R., S. Siengchin, J. Parameswaranpillai, M. Jawaid, C. I. Pruncu, and A. Khan. 2019. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate Polymers 207 (1):108–21. doi:10.1016/j.carbpol.2018.11.083.
  • Sarli, M. A., M. Hasanzadeh, M. A. Sarli, A. T. Özgüney, D. Duran, and H. A. Yilmaz. 2021. On the acoustic energy absorption properties of nonwoven layers produced from blend of estabragh and wool fibers. In XVth International İzmir Textile and Apparel Symposium, Bornova, Turkey, 340–47.
  • Sengupta, S. 2020. Development of jute fabric for jute-polyester biocomposite considering structure–property relationship. Journal of Natural Fibers 19 (5):1864–78. doi:10.1080/15440478.2020.1788495.
  • Singha, K., and M. Singha. 2013. Fiber crimp distribution in nonwoven structure. Frontiers in Science 1:14–21. 2013.
  • Sunter, D. A., W. R. M. Iii, J. W. Cresko, and H. P. H. Liddell. 2015. The manufacturing energy intensity of carbon fiber reinforced composites and its effect on life cycle energy use for vehicle door lightweighting. In 20th International Conference on Composite Materials, Copenhagen, Denmark.
  • Thakur, V. K., M. K. Thakur, and M. R. Kessler. 2017. Handbook of Composites from Renewable Resources: Functionalization. 4th ed. John Willey & Sons:Chichester.
  • Yang, H., R. Yan, H. Chen, D. H. Lee, and C. Zheng. 2007. Characteristics of hemicellulose, cellulose, and lignin pyrolysis. Fuel 86 (12–13):1781–88. doi:10.1016/j.fuel.2006.12.013.
  • Zheng, Y., and A. Wang. 2014. Kapok fiber: Structure and properties. In Biomass and Bioenergy: Processing and Properties, ed. K. Hakeem, M. Jawaid, and U. Rashid, 101–10. 1st ed. Cham: Springer.